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ABSTRACT

The identification of frequency dependent material property at nanoscale has been exten-

sively studied and played an important role in the failure analysis of materials, wound healing,

and polymer formation mechanism. In this dissertation, thedevelopment of a suite of control

tools to nanoscale broadband viscoelastic spectroscopy ispresented. The combination of novel

iterative control techniques with the integration of system identification and optimal input de-

sign techniques together can enable rapid measurement of nanomechanical properties of soft

materials over a broad frequency band. SPM and nanoindenterhave become enabling tools to

quantitatively measure the mechanical properties of a widevariety of materials at nanoscale.

Current nanomechanical measurement, however, is limited by the slow measurement speed:

the nanomechanical measurement is slow and narrow-banded and thus not capable of mea-

suring rate-dependent phenomena of materials. As a result,large measurement (temporal)

errors are generated when material undergoes dynamic evolution during the measurement.

The low-speed operation of SPM is due to the inability of current approaches to (1) rapidly

excite the broadband nanomechanical behavior of materials, and (2) eliminate the convolution

of the hardware adverse effects with the material response during high-speed measurements.

These adverse effects include the hysteresis of the piezo actuator (used to position the probe

relative to the sample); the vibrational dynamics of the piezo actuator and the cantilever along

with the related mechanical mounting; and the dynamics uncertainties caused by the probe

variation and the operation condition. Motivated by these challenges, this dissertation is fo-

cused on the development of novel control and system identification tools for rapid broadband

nanomechanical measurement.
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The first proposed approach utilizes the recently developedmodel-less inversion-based

iterative control (MIIC) technique for accurate measurement of the material response to the

applied excitation force over a broad frequency band. In theproposed approach, an input force

signal with dynamic characteristics of band-limited white-noise is utilized to rapidly excite the

nanomechanical response of materials over a broad frequency range. The MIIC technique is

used to compensate for the hardware adverse effects, thereby allowing the precise application

of such an excitation force and measurement of the material response (to the applied force).

The proposed approach is illustrated by implementing it to measure the frequency-dependent

plane-strain modulus of poly(dimethylsiloxane) (PDMS) over a broad frequency range ex-

tending over 3 orders of magnitude (∼ 1 Hz to 4.5 kHz).

To further attenuate the dynamics convolution effect, a model-based approach to compen-

sate for the dynamics convolution effect in nanomechanicalproperty measurements is pro-

posed In this dissertation. In the indentation-based nanomechanical property measurement

of soft materials, an excitation force consisting of various frequency components needs to

be accurately exerted to the sample material through the probe, and the indentation of the

probe into the sample needs to be accurately measured. However, when the measurement

frequency range increases close to the bandwidth of the instrument hardware, the instrument

dynamics along with the probe-sample interaction dynamicscan be convoluted with the me-

chanical behavior of the soft material, resulting in distortions in both the force applied and

the indentation measured, which, in turn, directly lead to errors in the measured nanomechan-

ical property (e.g., the creep compliance) of the material.In this dissertation, the dynamics

involved in indentation-based nanomechanical property measurements is analyzed to reveal

that the convoluted dynamics effect can be described as the difference between the lightly-

damped probe-sample interaction dynamics and the over-damped nanomechanical behavior

of soft materials. Thus, these two different dynamics effects can be decoupled via numerical

fitting based on the viscoelastic model of the soft material.The proposed approach is illus-

trated by implementing it to compensate for the dynamics convolution effect in a broadband
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viscoelasticity measurement of a Polydimethylsiloxane (PDMS) sample using scanning probe

microscope.

This dissertation also presents an optimal input design approach to achieve rapid broad-

band nanomechanical measurements of soft materials using the indentation-based method for

the investigation of fast evolving phenomenon, such as the the crystallization process of poly-

mers, the nanomechanical measurement of live cell during cell movement, and force volume

mapping of nonhomogeneous materials. The indentation-based nanomechanical measurement

provides unique quantification of material properties at specified locations. The measurement,

however, currently is too slow in time and too narrow in frequency (range) to characterize

time-elapsing material properties during dynamic evolutions (e.g., the rapid-stage of the crys-

tallization process of polymers). These limits exist because the excitation input force used in

current methods cannot rapidly excite broadband nanomechanical properties of materials. The

challenges arise as the instrumental hardware dynamics canbe excited and convoluted with

the material properties during the measurement when the frequencies in the excitation force

increase, resulting in large measurement errors. Moreover, long measurement time is needed

when the frequency range is large, which, in turn, leads to large temporal measurement er-

rors upon dynamic evolution of the sample. In this dissertation, we develop an optimal-input

design approach to tackle these challenges. Particularly,an input force profile with discrete

spectrum is optimized to maximize the Fisher information matrix of the linear compliance

model of the soft material. Both simulation and experimentson a Poly(dimethylsiloxane)

(PDMS) sample are presented to illustrate the need for optimal input design, and the efficacy

of the proposed approach in probe-based nanomechanical property measurements.
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CHAPTER 1. OVERVIEW

Identification of frequency dependent material propertiesis an important interdiscipline

research, which includes control theory, material science, nanomechanics and biomedical en-

gineering, and has broad applications in the development ofnew composite material and the

analysis of the mechanical failure of materials. In controlengineering, the field of system

identification uses statistical methods to build mathematical models of dynamical systems

from measured data. The quality of system identification depends on the quality of the inputs.

In recent decades, the theory of optimal experimental design has been increasingly used to

specify inputs that yield maximally precise parameter estimation. This dissertation starts from

developing a nonparametric estimation method in nanoscalebroadband viscoelasticity spec-

troscopy (NBVS) to seeking a systematic control-integrated system identification and optimal

excitation force design approach for rapid broadband nanomechanical property measurement

of soft materials. The control method is tested and implemented using atomic force micro-

scope. Then the proposed optimal excitation force design technique is applied in the mate-

rial property measurement. The complexity mostly due to thedynamics convolution effect,

nonlinearities and measurement noise is handled by the notion of model-less inversion-based

iterative learning control and optimal input design. To reduce the measurement error in the

viscoelasticity, the iterative control technique is integrated with the nonparametric estimation.

However, the dynamics convolution effect due to the interaction dynamics between the probe

and the sample surface is inevitable and will cause the measurement error in the measured

indentation. Then, a model-based approach is introduced tocompensate for the dynamic con-

volution effect in the nanomechanical measurement. To identify the fast evolving phenomenon
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such as the polymerization process of polymers and measure the nanomechanical property of

live cell during cell movement in liquid environment, the control-integrated optimal excitation

force design is developed and implemented in rapid broadband nanomechanical property mea-

surement. The proposed approach does not need any post-processing and is ready for online

implementation to measure the frequency dependent material property, such as force volume

mapping of nonhomogeneous materials.

1.1 The Study of Nonparametric Estimation in Frequency-dependent

Nanomechanical Property Measurement and the Compensationfor

the Dynamics Convolution Effect

Many approaches can be used to measure the material properties at nanoscale, force dis-

tance curve measurement is one of them. In usual force-curvemeasurements, the applied

input force follows a triangle trajectory (1). Although theload rate of the excitation force can

be substantially increased by using advanced control techniques to compensate for the instru-

ment dynamics effect—as demonstrated in (2), the excitation force profile used is quasi-static

and does not contain rich frequency components required to rapidly excite the broadband vis-

coelastic response of materials. One attempt at addressingthe lack of frequency components

in input force has been through the development of the force modulation technique (3; 4),

where a sinusoidal force signal (i.e., ac signal) of small amplitude is superposed on the trian-

gle input force and applied during measurements. The hardware dynamic response is coupled

(convoluted) into the measured data and must be accounted-for afterwards using a dynam-

ics model (4). As a result, the load/unload rates are limitedto a small range because the

oscillation amplitude (<100 nm) and the oscillation frequency (a few hundred Hz) haveto

be kept small (4) such that dynamics coupling can be adequately captured by using a simple

spring-mass-damper model. Moreover, the force-modulation technique is slow for measuring

material response over a large frequency range, because thede-modulation process must be
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applied to accurately measure the amplitude and the phase shift of the oscillation, which is

inherently time-consuming. To speed up the measurement of frequency dependent nanome-

chanical property of soft materials, the multifrequency approach (5; 6; 7) was developed in

2008. It has been demonstrated that the multi-frequency excitation approaches can improve

the measurement time and the force sensitivity over the single-frequency force-modulation

method. However, since the multi-frequency (or band-limited) input is applied to drive the

cantilever, such an excitation mechanism requires a high-bandwidth actuator-cantilever sys-

tem (i.e., the bandwidth contains all the excitation frequencies). Otherwise, the dynamics of

the cantilever (and possibly the actuator along with the related mechanical mounting) may be

convoluted with the material response in the measured data (5; 6), and undesirable distortions

may be induced in the excitation force, making the extraction of the material properties from

the measured data difficult and prone to calibration errors.

In order to address the problems discussed above, this dissertation presents a broadband

characterization approach that uses advanced control techniques to adjust the control input (to

the actuator) to “cancel” the coupling of the dynamics and other nonlinear and disturbance

effects into the measured output, thus allowing the desiredbroadband excitation force to be

exerted (from the cantilever) to the sample without distortions. Furthermore, this approach

does not require additional hardware augmentation and can be readily applied to existing SPM

hardware. Therefore, the developed approach extends and improves the multi-frequency ex-

citation approach. To further eliminate the dynamics convolution effect on nanomechanical

property measurements, a model-based approach was proposed. In the proposed approach, the

cantilever deflection dynamics is analyzed and modeled as a cascaded dynamic system con-

sisting of the piezoactuator, the cantilever along with themechanical fixture, the probe-sample

interaction dynamics, and the nanomechanical dynamics of the material. The cantilever de-

flection dynamics on both the soft sample and the hard reference sample are measured and

compared to reveal that the convoluted part of the instrument dynamics is characterized by

lightly-damped poles and zeros, whose locations coincide with those of the piezo and can-
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tilever dynamics. On the contrary, the mechanical behaviorof soft materials is characterized

by over-damped dynamic behavior that can be described by forexample, a Prony series model

(8). Then, the convoluted dynamics effect, distinct from the material behavior in frequency

domain, is removed numerically through fitting. The proposed approach is illustrated by im-

plementing it to the measurement data obtained in a broadband viscoelasticity measurement

of a PDMS sample using SPM. Both the multi-frequency approach (5; 6) and the iterative-

control-based method (2; 9) are applied in the measurement.The results demonstrate that the

dynamics convolution effect on the measurements in both cases can be effectively reduced by

using the proposed method.

1.2 Parameter Estimation and Optimal Excitation Force Design in

Rapid Broadband Nanomechanical Measurement

For many applications such as identification of the crystallization process of polymers,

measurement of nanomechanical property of live biologicalmaterial, high speed force map-

ping of nonhomogeneous material, the high speed nanomechanical measurement is needed.

In this dissertation, an optimal input design approach is proposed to achieve rapid identifi-

cation of broadband nanomechanical properties of soft materials through indentation-based

approach. Indentation-based approach using scanning probe microscope (SPM) or nanoin-

denter has become an enabling tool to quantitatively measure the nanomechanical properties

of a wide variety of materials, both locally and globally (1). The current measurement meth-

ods (4; 6), however, are limited in both the frequency range that can be measured and the

measurement time that is needed to measure the (frequency) rate-dependent viscoelasticity

of materials. These limits of current measurement methods (4; 6), in both measurement fre-

quency and time, arise as the excitation force from the probeto the sample surface employed

cannot compensate for the convolution effect of the instrument dynamics, (10), nor rapidly

excite the rate-dependent nanomechanical behavior of the material (11).
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Inefficiencies exist in current nanomechanical measurement methods for characterizing

the time-elapsing properties of soft materials. One of the main challenges to achieve rapid

broadband nanomechanical measurement is to ensure that 1) the force applied shall accurately

track the desired force profile and 2) the indentation shouldbe accurately measured. Accu-

rate tracking of the desired force profile is necessary to excite the material behavior in the

measured frequency range, as well as to avoid issues relatedto low signal-to-noise ratio and

input saturation (due to the force being too small or too large). Accurate indentation measure-

ment is needed to capture the material behavior as the response to the force applied. Recently,

model-based techniques (10; 12) have been developed to account for the dynamics convo-

lution effect on the measured indentation data. These post-processing technique, however,

cannot be used to achieve rapid broadband nanomechanical measurements. The other major

challenge in rapid broadband nanomechanical measurementsis to achieve rapid excitation of

the material response by the force applied (from the probe).Rapid excitation (of the material

response) is needed to capture the time-elapsing nanomechanical properties during dynamic

evolution of the material, for example, during the initial rapid stage of the crystallization of

polymers (11) or the healing process of live cell (13). Moreover, rapid excitation of material

response is also needed when mapping the nanomechanical properties of the material over

the sample surface. Although the mapping of elasticity/stiffness of materials at nanoscale can

be obtained by using the force volume mapping technique, theforce-curve measured at each

sample point is quasi-static and the mapping procedure is time consuming, with mapping time

in tens of minutes to several hours — which becomes even much longer to map rate-dependent

nanomechanical properties. Such a long mapping time renders the adverse effects (14) due to

disturbances (e.g., thermal drift) and variations of system dynamics pronounced. As a result,

large measurement errors occur, particularly when the sample is evolving.

To achieve rapid nanomechanical spectroscopy, an approachbased on the optimal input

design was developed. First, the measurement of nanomechanical properties is transformed

into a parameter identification problem by capturing the nanomechanical properties of the
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sample to be measured in a parameterized model (e.g., a truncated-order exponential (Prony)

series model of the complex compliance of the material (8)).Then, the optimal excitation

force — acting as the input to the material mechanics model — is sought to minimize the

covariance of the estimation error through the maximization of the Fisher information matrix

(15; 16) of the parameterized mechanics model. Specifically, the designed optimal excitation

force profile comprises multiple sinusoidal signals whose frequency and amplitude are op-

timized through an iterative experimental process. Not only can the obtained optimal force

profile rapidly excite the nanomechanical properties of materials over a broadband frequency

range, but also, with a discrete frequency spectrum, reducethe dynamics convolution effect

by facilitating the tracking of such an excitation force. Then, the designed optimal excitation

force profile (e.g., the cantilever deflection when using SPM) is tracked by using the recently-

developed inversion-based iterative control technique (2) that compensates for the hardware

dynamics convolution effect. The proposed approach is illustrated through both simulation

and experimental implementations on the measurement of viscoelasticity of a Polydimethyl-

siloxane (PDMS) sample using an SPM. The simulation and experiment results demonstrate

the need of optimal input design and the efficacy of the proposed approach in achieving broad-

band viscoelasticity spectroscopy.

1.3 Dissertation overview

The rest of this dissertation is organized as follows. In chapter 2, two issues encountered

in the nanomechanical measurement of soft materials were addressed. The first arising issue

is the lack of rich frequency components in the excitation force, and the measurement speed is

slow in order to sweep the frequency range for the measurement of frequency dependent ma-

terial properties. This issue was addressed by using a white-noise excitation force profile. The

second arising problem is the instrument dynamics effect coupled in the measured force and

indentation data. This problem was tackled by using the model-less inversion-based iterative
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learning control technique. The dynamics convolution effect in the measured viscoelasticity

due to the probe-sample interaction was removed by curve-fitting an ideal parametric mechan-

ics model—Prony series model. The measurement error can be dramatically reduced and the

measurement speed was significantly increased. The measured viscoelasticity compared well

with the dynamic mechanical analysis (DMA) result.

In chapter 3, to compensate for the dynamics convolution effect in the measured inden-

tation data, a model-based approach is proposed. First, thedynamics from piezoactuator to

cantilever was analyzed and modeled as a cascaded dynamic system. Then, the measurement

error in the indentation data was removed by the numeric curve fitting. The proposed approach

was implemented to measure the broadband viscoelasticity of a PDMS sample using SPM.

In chapter 4, to further increase the measurement speed for rapid broadband nanome-

chanical measurement, a control-integrated system identification and optimal excitation force

design approach was developed. First, the nanomechanical measurement was converted to the

parameter estimation problem. Then, the optimal excitation force design was implemented

to attenuate the measurement noise, the dynamics uncertainty and the thermal drift. The pro-

posed approach was simulated and implemented in experiments to demonstrate the need and

efficacy of the optimal excitation force design in nanomechanical property measurement. The

measurement result compared well with previous results andthe measurement time was fur-

ther decreased. The proposed approach does not need any post-processing and can be imple-

mented online for investigation of fast evolving phenomenon.

Finally, the conclusion is given in chapter 5.
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CHAPTER 2. NANOSCALE BROADBAND VISCOELASTIC

SPECTROSCOPY OF SOFT MATERIALS USING ITERATIVE

CONTROL

Abstract

In this chapter, a novel approach to nanoscale broadband viscoelastic spectroscopy is pre-

sented. The proposed approach utilizes the recently developed model-less inversion-based

iterative control (MIIC) technique for accurate measurement of the material response to the

applied excitation force over a broad frequency band. SPM and nanoindenter have become

enabling tools to quantitatively measure the mechanical properties of a wide variety of ma-

terials at nanoscale. Current nanomechanical measurement, however, is limited by the slow

measurement speed: the nanomechanical measurement is slowand narrow-banded and thus

not capable of measuring rate-dependent phenomena of materials. As a result, large measure-

ment (temporal) errors are generated when material undergoes dynamic evolution during the

measurement. The low-speed operation of SPM is due to the inability of current approaches

to 1) rapidly excite the broadband nanomechanical behaviorof materials, and 2) eliminate

the convolution of the hardware adverse effects with the material response during high-speed

measurements. These adverse effects include the hysteresis of the piezo actuator (used to po-

sition the probe relative to the sample); the vibrational dynamics of the piezo actuator and the

cantilever along with the related mechanical mounting; andthe dynamics uncertainties caused

by the probe variation and the operation condition. In the proposed approach, an input force
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signal with dynamic characteristics of band-limited white-noise is utilized to rapidly excite

the nanomechanical response of materials over a broad frequency range. The MIIC technique

is used to compensate for the hardware adverse effects, thereby allowing the precise appli-

cation of such an excitation force and measurement of the material response (to the applied

force). The proposed approach is illustrated by implementing it to measure the frequency-

dependent plane-strain modulus of poly(dimethylsiloxane) (PDMS) over a broad frequency

range extending over 3 orders of magnitude (∼ 1 Hz to 4.5 kHz).

2.1 Introduction

In this chapter, a novel indentation-based nanoscale broadband viscoelastic spectroscopy (NBVS)

methodology for soft materials is presented. The proposed NBVS approach utilizes the re-

cently developed model-less inversion-based iterative control (MIIC) technique (14) to allow

rapid excitation and measurement of nanomechanical behavior of materials over a broad fre-

quency band via indentation using scanning probe microscope (SPM) or nanoindenter. Com-

pared to other methods for nanoscale mechanical property measurements (17; 18), the SPM-

based force measurement has the unique advantage of applying force stimuli and then directly

measuring material response (i.e., the indentation measurement) on the same platform. Cur-

rent SPM-based force measurements, however, are limited bythe slow operation of SPM: the

force measurement in current state-of-the-art SPM is too slow to measure the rate-dependent

phenomena of materials (19), and large measurement (temporal) errors can be generated when

dynamic evolution of materials is involved during measurements (20). Operating speed of cur-

rent SPMs is limited by two factors: 1) the excitation force applied, which is either quasi-static

(1) or resonant-oscillation based (21), is either too narrow-banded in frequency (quasi-static)

or too slow (resonant-oscillation based) to rapidly excitethe nanomechanical behavior of ma-

terials over a broad frequency band; and 2) the hardware adverse effects can be coupled (con-

voluted) into the measured data if the measurement is at high-speed and over a broad frequency
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range. These adverse effects include the hysteresis of the piezo actuator (used to position the

probe relative to the sample) (22; 23), the vibrational dynamics of the piezo actuator and the

probe along with mechanical parts (24), and the dynamics uncertainties (25; 26). The pro-

posed approach aims at overcoming these drawbacks through abroadband characterization

approach analogous to system dynamics identification (27).

Development of rapid nanoscale broadband viscoelastic spectroscopy is needed to study

material properties (1) as well as physical and/or chemicalinteractions between different ma-

terials (28), particularly for biological samples that evolve and undergo significant changes

in mechanical response during the measurement time of the current state-of-art SPM systems.

For example, during the dehydration process of dentin collagen (29; 30) or the healing process

of a wounded cell, material viscoelastic response can evolve within seconds and use of con-

ventional force measurement techniques such as force volume mapping will result in large

temporal errors (31), because the measurements at the first sample point and the last sample

point are acquired at very different time instances. Rapid nanomechanical property measure-

ments will also dramatically improve the measurement efficacy. There exists a need to achieve

rapid measurement of nanomechanical properties of materials, but the rapid broadband mea-

surement of viscoelastic response at nanoscale is challenging.

In usual force-curve measurements, the applied input forcefollows a triangle trajectory

(1). Although the load rate of the excitation force can be substantially increased by using ad-

vanced control techniques to compensate for the instrumentdynamics effect–as demonstrated

in (2), the excitation force profile used is quasi-static anddoes not contain rich frequency

components required to rapidly excite the broadband viscoelastic response of materials. One

attempt at addressing the lack of frequency components in input force has been the develop-

ment of the force modulation technique (3; 4), where a sinusoidal force signal (i.e., ac signal)

of small amplitude is superposed on the triangle input forceand applied during measure-

ments. The hardware dynamic response is coupled (convoluted) into the measured data and

must be accounted-for afterwards using a dynamics model (4). As a result, the load/unload
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rates are limited to a small range because the oscillation amplitude (<100 nm) and the oscilla-

tion frequency (a few hundred Hz) have to be kept small (4) such that dynamics coupling can

be adequately captured by using a simple spring-mass-damper model. Moreover, the force-

modulation technique is slow for measuring material response over a large frequency range,

because the de-modulation process must be applied to accurately measure the amplitude and

the phase shift of the oscillation, which is inherently time-consuming. During high-speed

force measurements, the SPM dynamics consisting of the piezo actuator and the probe (32)

can be excited, resulting in large vibrations of the probe relative to the sample, which in turn,

leads to large errors in the obtained force measurements. Furthermore, substantial dynamics

uncertainties exist in the SPM system due to the change of operation conditions (e.g., change

of the cantilever), which makes the compensation of such dynamics effect challenging. When

the displacement of the piezo actuator is large during the force measurement, the hysteresis

effect of the piezo actuator becomes pronounced, further exacerbating large measurement er-

rors. Therefore, a measurement technique that decouples the hardware dynamics, nonlinear

hysteresis, and dynamic uncertainties from the high speed force measurements is required for

accurate material characterization.

The proposed broadband excitation and measurement approach is fundamentally different

from the recent development of broadband (or multi-frequency) excitation methods (5; 6;

7). It has been demonstrated recently (5; 6) that the multi-frequency excitation approaches

can improve the measurement time and the force sensitivity over the single-frequency force-

modulation method. However, since the multi-frequency (orband-limited) input is applied

to drive the cantilever, such an excitation mechanism requires a high-bandwidth actuator-

cantilever system (i.e., the bandwidth contains all the excitation frequencies). Otherwise,

the dynamics of the cantilever (and possibly the actuator along with the related mechanical

mounting) may be convoluted with the material response in the measured data (5; 6), and

undesirable distortions may be induced in the excitation force, making the extraction of the

material properties from the measured data difficult and prone to calibration errors.
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In order to address the problems discussed above, this chapter presents a broadband char-

acterization approach that uses advanced control techniques to adjust the control input (to the

actuator) to “cancel” the coupling of the dynamics and othernonlinear and disturbance effects

into the measured output, thus allowing the desired broadband excitation force to be exerted

(from the cantilever) to the sample without distortions. Furthermore, this approach does not

require additional hardware augmentation and can be readily applied to existing SPM hard-

ware. Therefore, the developed approach extends and improves the multi-frequency excitation

approach.

2.2 Iterative Control Approach to Broadband Viscoelastic Spectrum on

SPM

2.2.1 Nanoscale Material Property Measurement using SPM

SPM is not only a unique tool to obtain nanoscale images of materials, but also becomes

a powerful tool to characterize various nanoscale materialproperties through the measure-

ment of tip-sample interaction force, i.e., the force curvemeasurement (2). To obtain the

force curve, a micro-fabricated cantilever with a nano-sized tip (see Fig. 2.1(a)) is driven by

a piezoelectric actuator to push against the sample surfaceuntil the cantilever deflection (i.e.,

the tip-sample interaction force) reaches the setpoint value. Then the cantilever will retrace

from the sample surface to a pre-determined distance. The force distance curve is obtained

by measuring the tip-sample interaction force versus the vertical displacement of the SPM-tip

during the push-retraction process (see Fig. 2.1(b)). The force curve contains the information

of tip-sample interaction force and the indentation and thereby can be used to explore various

material mechanical properties such as the Young’s modulus(1).

Next, a novel feedforward control-based approach to achieve NBVS using SPM is pre-

sented. The method exploits a newly developed iterative feedforward control technique (14)
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Figure 2.1 The scheme of force curve measurement by SPM

in force curve measurements—to eliminate the convolution of SPM dynamics into the mea-

sured data and enables the direct exertion of a broadband (infrequency) excitation force on

the sample. Then the measured input-output data are utilized in a mechanics model to ob-

tain the frequency-dependent (storage and loss) modulus ofsoft materials. The preliminary

result has been reported in-brief recently inApplied Physics Letters(9). In this chapter, we

extend the work by providing the detailed development of theproposed method, including

more experimental results. We start with presenting the MIIC technique.

2.2.2 Model-less Inversion-based Iterative Control

The MIIC control law can be described in frequency domain as follows:

u0( jω) = αzd( jω), k = 0,

uk( jω) =






uk−1( jω)
zk−1( jω) zd( jω), whenzk−1( jω) 6= 0,

andk≥ 1,

0 otherwise

(2.1)

where ‘f ( jω)’ denotes the Fourier transform of the signal ‘f (t)’, ‘ zd(·)’ denotes the desired

output trajectory, ‘zk(·)’ denotes the output obtained by applying the input ‘uk(·)’ to the system

during thekth iteration, andα 6= 0 is a pre-chosen constant (e.g.,α can be chosen as the

estimated DC-Gain of the system).
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Figure 2.2 The system diagram of the MIIC algorithm.

The convergence of the MIIC algorithm has been analyzed in (14). It has been shown

that the error between the desired input and the iterative control input, under effects of mea-

surement noise and/or disturbance, is small provided that the signal to noise/disturbance ratio

(SNR) is large. Furthermore, the output tracking error can be quantified in terms of the SNR.

See the Appendix for details.

2.2.3 Implementation of the MIIC Technique in NBVS

As conceptually depicted in Fig. 2.3, the use of the MIIC technique in the proposed NBVS

is to “learn” and “cancel” the dynamics of the piezo-cantilever system for the given desired

force signalzd(t), such that the output of the piezo-cantilever system, i.e.,the force exerted

onto the sample,zf (t), will follow the desired force signal,zf (t) → zd(t). Thus this proposed

approach is different from the multi-frequency excitationmethod (5; 6), where the desired

force-signal is applied to drive the piezo-cantilever system directly (the dashed arrow path in

Fig. 2.3). The MIIC technique is ideal for applications suchas force-curve measurements,

because in these applications, the operation is repetitiveand the desired trajectory is known

a priori. Therefore, the MIIC law can becomputed offline (instead of online) directly in

frequency domain—the time-domain iterative control inputis obtained through the inverse

Fourier transform, and then applied as a feedforward, open-loop control input to the system. In
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such a frequency-domain implementation, Theorem 1 can be used to guide the use of the MIIC

technique in practices—the MIIC input (Eq. (2.1)) should beapplied at the frequencies where

the SNR is large enough (as quantified by Eqs. (1, A.1)). At other frequencies, the control

input should be set to zero. Note that in applications including nanomechanical measurements,

the SNR can be experimentally estimated in practices by measuring the noise spectrum and

comparing it to the pre-known desired output spectrum.

Piezo-cantilever

System

Z
f
(t)

Sample material

Z
d
(t)

Z
d
(t)

(Piezo-cantilever)-1

Z
d
(t)

MIIC

Figure 2.3 The schematic comparison of the MIIC algorithm (the dashed box)
with the multi-frequency excitation method (the dashed arrow) in
nanomechanical measurements.

The advantages of the MIIC technique include 1) the utilization of the noncausality of the

operation (since the entire desired trajectoryzd(t) is known a priori) to improve the control

performance, 2) the ease and efficacy in compensating for dynamics uncertainties through

iterations, and 3) the ease of implementation with no need toacquire the frequency response

(and/or dynamics model) of the system. In the proposed NBVS,the MIIC technique is used

to exert a band-limited white-noise type of input force to excite the nanomechanical behavior

of soft materials.

We note that the band-limited white-noise type of input (force) contains all frequency com-

ponents uniformly distributed within the frequency band, thus allowing maximum excitation

of the material’s dynamics such as the rate-dependent mechanical behavior of the material,

i.e., in the viewpoint of system identification, the white-noise input satisfies the persistent ex-

citation condition (27). In this chapter, the obtained material response to such a band-limited

white-noise input force will be used to obtain the non-parametric complex modulus (1) first,

and then to identify the parametric truncated Prony series model of the storage and loss mod-
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ulus (33).

2.2.4 Identification of the Frequency-dependent Plane-strain Modulus

As the proposed NBVS is developed for soft material characterization, the indentation (i.e.,

the soft material’s response to the excitation force) is measured by using the MIIC technique

to measure the force-deflection on the soft material and thaton a reference hard material (1)

(for the same driven input). The obtained input-output dataare used in a mechanics model

to obtain the complex modulus of the material in frequency domain. Finally, the complex

modulus is modeled by a linear model (a truncated Prony series), and the parameters in the

linear model are identified.

2.2.4.1 Obtain the Excitation Force and the Indentation Response

The force applied from the tip to the sample during the force measurements can be obtained

from the measured cantilever deflection signal by using the relation (1),

F = Kt ×Ct ×dS, (2.2)

whereKt is the stiffness constant of the cantilever,Ct is the sensitivity constant of the deflec-

tion signal vs. the vertical displacement of the tip, anddS denotes the cantilever deflection

on the soft sample. Both the cantilever stiffnessKt and the deflection sensitivityCt can be

experimentally calibrated (34).

Then, the indentation of the tip into the soft sample can be obtained as (2)

h = Ct × (dH −dS), (2.3)

wheredH denotes the deflection on the hard material to the same control input for which

the deflection on the soft material,dS, is measured. Note that the elastic modulus of the

reference hard material (e.g., sapphire) should be much higher (several orders higher) than that
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of the soft material (e.g., PDMS)—thus the indentation on the reference material is negligible

(compared to that on the soft material). Hence, the indentation of the tip into the soft sample

can be obtained from the difference between the cantilever deflection on the soft sample and

that on the reference material (1).

2.2.4.2 Obtain the Complex Modulus of the Material

In the NBVS experiments, the material response is measured through superposition of two

indenter loads — a constant mean load level and a vibratory load of smaller amplitude with a

“white noise” like frequency spectrum. Recent work by Wahl et al. (35), Johnson et al. (36)

and Barthel (37) has shown that indentation response to sucha load history may be analyzed

through separate analysis for static (mean) load and dynamic (vibratory) load. The material

response to static load components determines the mean contact radius for the indentation.

The response to oscillatory load is well approximated as indentation by a uniform cylindrical

punch of radius equal to mean contact radius.

Following Wahl et al’s (35) experimental analysis and theoretical development reported

by Johnson et al. (36), the frequency dependent modulus of soft materials is determined

through decoupling of force-deflection response. Fast Fourier transform of the applied force

and measured deflection is utilized to decouple the static and dynamic components. The static

components of the force and indentation are utilized to determine the mean contact radius.

Dynamic components and mean contact radius are used to determine the frequency dependent

material modulus.

In the case of no adhesive interactions between the indenterand indented material, Hertz’s

contact analysis (1) may be utilized to analyze the static components of load and deflections

for mean contact area according to the following relation:

F0 =
4E∗

0a3
0

3R
(2.4)
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However, in the case of adhesive interactions, the static components may be analyzed

using the Johnson, Kendall and Robert (JKR) theory to determine the mean contact radius.

According to the JKR theory,

F0 =
4E∗

0a3
0

3R
−2
√

2πE∗
0wa3

0; (2.5)

δ0 =
a2

0

R
−
√

2πa0w
E∗

0
; (2.6)

Fpullout = −3
2

πwR; (2.7)

whereF0 is the static component of the normal force between the tip and the sample surface,

andδ0 is the static component of the indentation of the tip on the sample surface. The sta-

tic forceF0 and the corresponding indentationδ0 were experimentally measured at 139.3 nN

and 166.7 nm, respectively.E∗
0 is the combined plane-strain modulus of the sample material,

which was calculated at 1.53 MPa by Eq. (2.5, 2.6), and w is theadhesion energy, which was

calculated at 0.067 N/m by Eq. (2.7) (E∗
0 is the geometric mean of the plane-strain moduli

of the soft material and the indenter(1/E∗
0) = (1/E∗

indenter)+ (1/E∗
sample). The plane-strain

modulus of materials is a combination of its elastic modulusand Poisson’s ratio. For elastic

materials the plane-strain modulus is expressed as:E∗ = E/(1−ν2). Since the indenter mod-

ulus (GPa) is almost three orders of magnitude greater than the soft material modulus (MPa),

E∗
0 is dominated by the lower of the two moduli, namely, the soft material,E∗

0 ∼ E∗
sample.), a0

is the mean contact radius, and R is the tip radius. The pullout forceFpullout is measured in a

separate experiment (38). Once the adhesion energy w is known, the mean contact radius,a0,

and the combined plane-strain modulus of the material,E∗
0, can be calculated from Eqs. 2.5

and 2.6. In separate experiments where AFM tip was pulled offthe surface, pull-off force was

measured to be 30 nN. The measured value for PDMS samples compares well with previous

reports (38). It is important to note that in the NBVS experiment, the AFM tip was always
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in contact with the sample and measured pull-out force is only utilized to determine the mean

contact radius.

The above analysis assumes that the SPM-tip shape can be approximated as a parabolic

surface. The SPM tip is used to scan a hard sample many times before using it in the force-

curve experiments such that the wear during imaging resultsin desired tip shape (39; 40). The

resulting shape is verified by measuring the tip profile through experiments (see Sec. 2.3.2.3).

Also, the friction during the contact is assumed to be negligible. This is acceptable in the pro-

posed approach because during the force measurement, the horizontal in-plane displacement

of the tip relative to the sample is negligible, and the tip isin continuous contact with the

sample throughout the measurement.

The oscillatory component of the load history is analyzed using the load-displacement re-

lation for cylindrical punch with the radius equal to mean contact radius indenting the surface

(35; 36). Therefore, the frequency-dependent plane-strain modulus is computed as:

E∗( jω) =
∆P( jω)

2a0∆δ ( jω)
(2.8)

where∆P( jω) is the amplitude of the excitation force, and∆δ ( jω) is the amplitude of the

indentation of the material at frequencyω by the SPM-tip.

Then the storage and the loss modulus of the material are obtained as the real part and the

imaginary part of the complex modulus, respectively,

E∗( jω) = E
′
( jω)+ jE

′′
( jω). (2.9)

We note that some small residual SPM-dynamics effect might still appear in the com-

plex modulus at some frequencies, for example, around the resonant peaks—due to the sen-

sitive variation of the SPM-dynamics around those frequencies, resulting in pronounced mea-

surement error. Thus, we introduce the parameter-based approach to identify the frequency-

dependent plane-strain modulus next.
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2.2.4.3 Identification of the Frequency-dependent Plane-strain Modulus Based on a

Linear Prony Series Model

A linear Prony series model is utilized to identify the combined modulus of soft materials.

The use of the Prony series model allows a substantial removal of the residual SPM dynamics

effect from the measured data, and thereby a more accurate combined modulus E(t) can be

obtained. In this chapter, we use a truncated Prony series (i.e., a series of discrete exponential

terms) to model the combined modulus (33; 41).

E(t) = E∞ +
n

∑
i=1

Ei ·e−t/τi , (2.10)

whereE∞ is the fully relaxed modulus,Eis are the modulus coefficients, andτis are the discrete

retardation times.

The corresponding complex combined modulusE∗( jω), can be obtained from the Fourier

transform of Eq. (2.10), as presented below as the summationof the real part and the imaginary

part,

E∗( jω) =

(
E∞ +

n

∑
i=1

Ei · τ2
i ·ω2

1+ τ2
i ·ω2

)
+

(
n

∑
i=1

Ei · τi ·ω
1+ τ2

i ·ω2

)
· j, (2.11)

The parameters in the truncated Prony series model,Eis andτis, are identified via curve-

fitting the experimentally measured storage and loss modulus (i.e., the real and the imaginary

part in Eq. (2.8), respectively) with respect to the counterparts in Eq. (2.11), respectively. The

curve-fitting is based on the least-square minimization, thereby it is similar to the least-square

algorithm for parameter estimation commonly used in standard system identification schemes

(27). Also note that the modulus coefficientsEis and the retardation constantsτis for i=1, · · · ,

3 appear in the fitting of both the real part and the imaginary part. Thus the average value of

the fitting results is used for these parameters. Once the parameters of the linear Prony series

model are identified, the plane-strain modulus can be plotted according to Eq. (2.10).
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2.3 Experimental Example: Frequency-dependent Viscoelastic

Measurement of PDMS

We demonstrate the proposed technique by implementing it tomeasure the combined mod-

ulus of PDMS. We start with describing the experimental system.

2.3.1 Experimental Setup

The experimental system is schematically shown in Fig. 2.4.A commercial SPM system

(Dimension 3100, Veeco Inc.) was used in the experiment, where the SPM-controller has

been customized so that the PID control circuit of the SPM-controller was bypassed when the

external control input was applied to drive the vertical z-axis piezoactuator. (see Fig. 2.4).

The cantilever deflection sensor signal was acquired directly through a data acquisition card

(DAQ) installed in the control computer. All the control input signals to the piezoelectric

actuator were generated by using the MATLAB-xPC-target package (Matheworks Inc.), and

sent through the DAQ card to drive the piezotube actuator viaa high-voltage amplifier.

High-Voltage

   Amplifier

Piezo Input u(t)
(Low-voltage)

Piezo Input
(High-voltage)

  MATLAB,

XPC-Target(                      )

SPM

Z-axis

Piezo

Cantilever Deflection
(Low-voltage)

Figure 2.4 Schematic diagram of the experimental setup to implement MIIC al-
gorithm in force-curve measurements.

2.3.2 Experimental Results& Discussion

2.3.2.1 Tracking of the Band-limited White-noise Trajectory

First, the MIIC algorithm was applied to enable applicationof a band-limited white-noise

type of excitation force by the cantilever on the PDMS sample(Readers are referred to Ref.
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(2) for the preparation of the PDMS sample). A band-limited white-noise was generated in

MATLAB for a time period of 6 seconds (In the experiment, initially a ramp signal of 0.5

sec. duration was applied to gradually increase the load force to the desired steady state

load level. Then the force load was maintained at the same level for 0.5 second. Finally,

two copies of the band-limited white-noise-like excitation force of 6 second duration were

concatenated and then augmented to the steady-state force load and applied on the PDMS

sample. Experimental results showed that the response of the initial load reached the steady-

state in about 2-3 seconds, and the experimental result fromthe second 6-second white-noise

excitation force was used in the analysis. Therefore, the effect of the starting load history

was not considered in the analysis.). The cut-off frequencyof the white-noise was chosen

at 4.5 kHz. Note that the bandwidth of the z-axis SPM dynamics, with the voltage to the

z-axis piezo actuator as the input and the cantilever deflection as the output, was at 1.27 kHz

(The bandwidth was measured as usual as the frequency where the system gain drops by 3 dB

from its DC-gain). Then the generated force trajectory was used as the desired trajectory in the

MIIC algorithm and applied in the force measurement on the PDMS sample along with a small

normal force. A mean load was used to avoid the pull-off of thetip from the sample surface

during the measurements. No significant difference in the obtained data was observed when

the normal force was varied a couple of times. The iteration described in Eqs. (2.1) converged

in 3-5 iterations, and the converged output and the desired trajectory are compared in Fig. 2.5

(a) for the entire 6 second trajectory, and in Fig. 2.5 (b) forthe zoomed-in view of the tracking

in a 0.01 second period for time t∈ [2, 2.01] second. The corresponding tracking error for the

zoomed-in portion is also shown in Fig. 2.5 (c). In addition,the tracking performance was also

quantified in terms of the relative RMS errore2(%) and the relative maximum errore∞(%), as

shown in Table 2.1, where the relative RMS error and the relative maximum error are defined

below:



www.manaraa.com

23

e2(%) =
‖zd(·)−z(·)‖2

‖zd(·)‖2
×100%, (2.12)

e∞(%) =
‖zd(·)−z(·)‖∞

‖zd(·)‖∞
×100%. (2.13)
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Figure 2.5 (a) The experimental tracking result (i.e., the force applied to the
PDMS sample, which was converted from the cantilever deflection)
of the band-limited white-noise trajectory with a period of6 sec., (b)
the zoomed-in view of the tracking result for time t∈ [2, 2.01] sec.,
and (c) the tracking error of 6 sec.

The experimental results show that by using the MIIC technique, precise output tracking

of complex desired trajectories can be achieved. For the cut-off frequency of 4.5 kHz, the

output tracking trajectory converged to the desired trajectory within 4 iterations. The relative

maximum-tracking error and the relative RMS-tracking error were both less than 5%. Such
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a precise exertion of a complex excitation input force in theforce measurement was difficult

to achieve by using feedback control—if not entirely impossible, because the band-limit of

the trajectory at 4.5 kHz was significantly higher than the bandwidth of the z-axis dynamics

at 1.27 kHz (measured by the 3dB drop of the dynamics gain fromits dc-Gain). As shown in

Fig. 2.6, the z-axis SPM dynamics was quite complicated withseveral resonant peaks below

the frequency band of the excitation force at 4.5 kHz. The z-axis SPM dynamics from the input

of the piezotube actuator to the output of the cantilever deflection was measured under the

condition that the SPM tip was in contact with the hard sapphire sample with a small normal

load. Note since the sample was hard and the indentation was negligible, the measured z-axis

frequency response should mostly represent the dynamics from the z-axis piezo actuator to the

SPM-probe.
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Figure 2.6 The experimentally measured frequency responseof the SPM dynam-
ics in the z-axis direction, where the red-dashed line at 4.5kHz identi-
fies the cut-off frequency of the band-limited white-noise used as the
excitation force in the experiments.

The tracking precision of such a complex trajectory can alsobe evaluated by comparing
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Table 2.1 Tracking performance of the MIIC technique to track a white-noise
trajectory with the cut-off frequency of 4.5 KHz, where “Iter.No.” de-
notes the number of iterations used in the experiments.

Iter.No. 1 2 3 4 5
e∞ (%) 112.1 17.7 15.9 5.2 4.5
e2 (%) 106.1 14.1 12.5 4.3 4.1

the power spectrum of the tracking result with the desired one in the frequency-domain. As

can be seen from Fig. 2.7, the desired trajectory has rich frequency components across the

entire frequency spectrum (Fig. 2.7 (a)), and the power spectrum of the error was maintained

very small with no conspicuous difference at all frequency components (Fig. 2.7 (b)). The 2-

norm of the power-spectrum of the tracking error is only 2.6%of that of the desired trajectory.

Therefore, the experimental results show that the MIIC technique can be used to track complex

excitation force profile in force curve measurements.

For comparison, we also applied the desired band-limited white-noise input signal (after

being scaled by the sensitivity of the piezo actuator to the cantilever deflection) directly to

drive the piezo actuator—the same as in the multi-frequencyexcitation approach (5; 6; 7).

The power spectrum of the obtained cantilever deflection (i.e., the desired input force) is plot-

ted in Fig. 2.7 (c). Since the frequency band of the excitation signal at 4.5 KHz is substantially

higher beyond the bandwidth of thez-axis SPM dynamics at 1.27 KHz, and significant dy-

namics effect exists within the 4.5 KHz frequency range (seeFig. 2.6), the power-spectrum

of the excitation signal obtained in this direct implementation scheme has been dramatically

distorted from being “white” (compare Fig. 2.7 (c) with (a)). Particularly, the power-spectrum

of the excitation signal around the resonant peak of thez-axis SPM dynamics is over 2 orders

of magnitude larger than those at other frequencies. Such anexcitation force is not suitable

for broadband viscoelasticity measurement as it results inpoor signal to noise ratio at majority

frequencies, and clearly demonstrates the limits of the multi-frequency approach (5; 6; 7)—
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the frequency range of the excitation force should stay within the bandwidth of the system

dynamics, whereas the use of the MIIC algorithm effectivelyremoves such a limit.

2.3.2.2 The Force and the Indentation Measurements

The force applied on the PDMS sample was computed using Eq. (2.2), where the sensi-

tivity constant of the cantilever was experimentally measured to be 65 nm/V by following the

method outlined in (34), and the cantilever spring constantwas determined to be 0.53 N/m by

using the thermal noise method (34). Note that in nanomechanical property measurements us-

ing SPM, a cantilever with the spring constant accommodating the material to measure should

be chosen, i.e., the cantilever should be soft enough with good force sensitivity to allow small

probe-sample interaction force in the force-indentation measurement, whereas stiff enough to

reduce the probe-sample adhesion effect. In this experiment, the cantilever with small spring

constant was used. To measure the indentation, the converged iterative control input (obtained

in Sec. 2.3.2.1 on the PDMS sample) was applied in the force measurement on the hard

sapphire reference sample. The indentation of the SPM-tip in the PDMS sample was then cal-

culated from the difference between the cantilever deflection on the PDMS sample and that on

the sapphire sample (see Eq. (2.3)). The experimentally measured displacement of the probe

on a PDMS sample is shown in Fig. 2.8(a), the indentation of the probe into the PDMS sample

is plotted in Fig. 2.8(b) for a period of 6 seconds, and the zoomed-in view of Fig. 2.8(b) for

time t∈ [2, 2.01] sec. is shown in Fig. 2.8(c).

The experimentally measured force-indentation data reveal the frequency-dependent vis-

coelastic characteristics of the PDMS material. We note that compared to PDMS, sapphire

sample can be practically regarded as “infinitely hard”. Therefore, under the same control

input to the z-axis piezo actuator, the cantilever deflection obtained on the sapphire sample

should be always larger than that on the PDMS sample. Such a prediction agreed with our

experimental results: the indentation obtained in the experiments was always greater than
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Figure 2.7 (a) Comparison of the magnitude of the frequency components in the
desired white-noise input force with that in the measured input force
obtained by using the MIIC technique, (b) the magnitude of the fre-
quency components in the tracking error by using the MIIC technique,
and (c) the magnitude of the frequency components in the measured
input force obtained by using the multi-frequency excitation method
(6; 7).
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zero (see Fig. 2.8(c)). Furthermore, the experimental results also show that the indentation

response of the PDMS sample wasfrequency dependent: the amplitude of the frequency com-

ponents became smaller as frequency increased (see Fig. 2.9). Such a trend also agreed with

the viscoelastic properties of PDMS: as the excitation frequency increased, the movements of

the molecules of the PDMS sample were significantly retardedsince they cannot follow the

external deformation fast enough, hence, a faster externaldeformation rate resulted in stiffer

material response. Therefore, the experiment results demonstrate that the proposed NBVS

technique can be used to measure frequency-dependent viscoelastic properties of materials

over a large frequency range.
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Figure 2.8 (a) The experimentally measured displacement ofthe probe on the
PDMS sample, (b) the indentation of the probe into PDMS for a pe-
riod of 6 sec., and (c) the zoomed-in view of plot (b) for time t∈ [2,
2.01] sec.
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Figure 2.9 (a) The tip-sample interaction force that shows the band-limited
white-noise characteristic, and (b) the indentation into the PDMS
sample obtained under the force of (a).

2.3.2.3 Complex Modulus Identification

Load and indentation response measured on PDMS along with measured AFM tip radius

and adhesive force were used in Eqs. (2.5-2.9) in order to determine the complex modulus.

The PDMS sample demonstrated significant adhesive forces hence the JKR based analysis

outlined in Sec. 2.2 was used to determine the material response. The AFM tip radius was ex-

perimentally characterized using a standard probe calibration sample (porous aluminum PA01)

(34). The probe radius was determined to be 95 nm by fitting a parabola to the measured tip

shape over a height of 150nm to 220 nm (34). Mean values of indentation and forces were

used in Eqs. (2.5)-(2.7) to determine the average contact radius during the indentation. The

average contact radius during the experiment was determined to be 128.9 nm. In addition,

the combined plane-strain modulus of the PDMS was determined to be 1.53 MPa. The aver-

age contact radius and fourier spectrum of the measured loadand indentation response were

used in Eq. (2.8) to determine the complex modulus. Obtainedcomplex modulus is plotted

in Fig. 2.11 as a function of the frequencies. As commonly occurring in frequency response
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measurements, “spikes” occurred in the complex modulusE∗( jω) plot, and MATLAB com-

mand ‘spafdr’ was used to remove such “spikes” (see Sec. 2.2.4.2). The improved complex

modulus result was also plotted in Fig. 2.10. The obtained complex modulus result was also

used to identify the parameters in the linear viscoelasticity model Eq. (2.11). Particularly, a

3rd-order Prony series model was used (n=3 in Eq. (2.11)) as the fitting error became sub-

stantially larger when a lower-order model was used, whereas remained at the same level with

higher order model. The real part and the imaginary part of the complex modulus,E∗( jω),

were fitted separately by using the MATLAB command ‘nlinfit’ (see Eq. (2.11)), and the

averaged values from these two fittings (the real-part and the imaginary part) were used for the

parameters in the linear viscoelasticity model Eq. (2.11).The fitting results (for the real-part

and the imaginary-part of the complex modulus) are comparedwith the averaged values in

Table 2.2 and in Fig. 2.11 along with the experimental data.

The results showed that the identified 3rd-order Prony series model fitted the experimental

data quite well as the relative RMS errors in the curve-fitting of the real and the imaginary

part were small at 4.59% and 4.96%, respectively. Note that even though the real-part and

the imaginary-part were fitted independently, the real-part fitting values were quite close to

those from the imaginary-part fitting (see Fig. 2.11 and Table 2.2). Table 2.2 also shows that

the three fitted relaxation time constants occupied three different time orders, spanning from

0.1 ms to 10 ms. Thus, the averaged parameters were used in thelinear viscoelasticity model

to plot the real-part and the imaginary-part of the complex modulus, and compared to those

of the experimental data, as shown in Fig. 2.11 with semi-logarithmic-scale in frequency.

Moreover, we note that there exist some residual SPM z-axis dynamics effects in the modulus

of the PDMS sample. However, the curve-fitting result in Fig.2.11 captured the trend of

the experimentally measured data quite well. After all the parametersEi andτi in the 3rd-

order Prony series model were estimated, the modulus in timedomain was calculated from

Eq. (2.10), as shown in Fig. 2.12.
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Table 2.2 The parameters generated from the curve fitting of the real part and
imaginary part of the complex modulus, and their average.

Param. Real Part Imag. Part Average
E∞ (MPa) 3.97 NA 3.97
E1 (MPa) 3.79 3.79 3.79
E2 (MPa) 3.27 8.26 5.77
E3 (MPa) 6.70 7.78 7.24
τ1 (ms) 0.63 0.32 0.48
τ2 (ms) 1.0 1.0 1.0
τ3 (ms) 10.0 10.0 10.0
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2.3.2.4 Discussion

According to the calculated complex modulus, the instantaneous modulus of PDMS is

about 20.8 MPa and it quickly relaxes to 3.97 MPa. The instantaneous and the static modu-

lus were computed by setting timet → 0 andt → ∞, respectively, in the Prony series model

Eq. (2.10). The combined plane-strain modulus determined from fitting the average inden-

tation and load response is 1.53 MPa and compares well with the fully relaxed modulus. In

addition, the magnitude of the instantaneous and the fully relaxed modulus compare well with

the dynamic mechanical analysis (DMA) tests on the PDMS samples prepared with the sample

procedure (2). The PDMS modulus was found to change from 6 MPato 2 MPa as the temper-

ature was changed from -30◦ to room temperature. At room temperature, PDMS is above its

glass temperature and displayed a clear rubbery viscoelastic response. Our proposed charac-

terization technique clearly captures the rate dependent viscoelastic nature of PDMS polymer.

These results demonstrate the efficacy of our technique for rapid broadband viscoelastic char-

acterization. Experimental results show a larger noise forthe low frequency range below 5

Hz. Since the material response is measured only over a shortduration [less than 6 seconds],

the low frequency response might not have been accurately captured. This source of noise

and variability may be addressed through measuring material response to white noise based

excitation for a longer period of time. Measured response isanalyzed using contact mechanics

models that account for adhesive interactions between SPM probe and sample surface. This

analysis utilizes a simple model to account for this interaction that can be readily applied to

other soft materials. The plane-strain modulus characterized using this approach includes the

time dependence of the stress relaxation modulus and Poisson’s ratio. Recently a number of

reports (42; 43) have discussed the time dependence of Poisson’s ratio, but there are only a

few reports on its experimental characterization (44). In absence of independent experimen-

tal characterization for the Poisson’s ratio, two commonlyused assumptions in viscoelasticity

(45) of time independent constant, Poisson’s ratio or time independent constant, bulk modulus,
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may be utilized to compute the other material response functions for a viscoelastic material

from the experimentally measured response. More involved contact models (46) may also be

used to quantify the influence of probe-surface interactions (10) on the measured response.

2.4 Conclusions

This chapter presented a novel nanoscale broadband viscoelastic spectroscopy (NBVS).

In the proposed NBVS approach, the recently developed MIIC technique is used to: I) the

exertion of excitation force with broad frequency components onto the sample, and II) the

measurement of the material response for such excitation (i.e., the material indentation). The

frequency-dependent viscoelasticity of the material was then obtained by using the measured

excitation force and the indentation in a contact mechanicsmodel that describes the dynamics

interaction between the probe and the sample. The proposed NBVS was illustrated by im-

plementing it to measure the rate-dependent viscoelastic response of a PDMS sample. The

experimental results showed that the use of the MIIC technique enabled the cantilever deflec-

tion to precisely track a band-limited (cut-off frequency:4.5 kHz) white-noise type of desired

trajectory on the PDMS sample, thereby applying a band-limited white-noise type of excita-

tion force on the PDMS sample. Then the indentation of the PDMS sample was obtained by

applying the same control input to obtain the force measurement on a reference hard sam-

ple. The obtained excitation force and the indentation results showed that the rate-dependent

modulus of soft materials like PDMS can be measured by using the proposed NBVS approach.
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CHAPTER 3. MODEL-BASED APPROACH TO COMPENSATE FOR

THE DYNAMICS CONVOLUTION EFFECT IN

NANOMECHANICAL PROPERTY MEASUREMENT

Abstract

This chapter presents a model-based approach to compensatefor the dynamics convolution

effect in nanomechanical property measurements. In the indentation-based nanomechanical

property measurement of soft materials, an excitation force consisting of various frequency

components needs to be accurately exerted to the sample material through the probe, and the

indentation of the probe into the sample needs to be accurately measured. However, when the

measurement frequency range increases close to the bandwidth of the instrument hardware,

the instrument dynamics along with the probe-sample interaction dynamics can be convoluted

with the mechanical behavior of the soft material, resulting in distortions in both the force

applied and the indentation measured, which, in turn, directly lead to errors in the measured

nanomechanical property (e.g., the creep compliance) of the material. In this chapter, the

dynamics involved in indentation-based nanomechanical property measurements is analyzed

to reveal that the convoluted dynamics effect can be described as the difference between the

lightly-damped probe-sample interaction dynamics and theover-damped nanomechanical be-

havior of soft materials. Thus, these two different dynamics effects can be decoupled via

numerical fitting based on the viscoelastic model of the softmaterial. The proposed approach

is illustrated by implementing it to compensate for the dynamics convolution effect in a broad-
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band viscoelasticity measurement of a Polydimethylsiloxane (PDMS) sample using scanning

probe microscope.

3.1 Introduction

In this chapter, a model-based approach to compensate for the dynamics convolution effect

on indentation-based nanomechanical property measurements is proposed. Indentation-based

nanomechanical property measurement of soft materials using scanning probe microscope

(SPM) or nanoindenter provides unique insights into material properties at nano-scale, criti-

cal to unravel the structure-property correlation of a widevariety of materials ranging from

polymers to live biological materials (1; 47; 48; 49; 50). Extraneous dynamics, however, can

be convoluted with the material response during the measurement, resulting in measurement

errors in the obtained material properties (e.g., the creepcompliance). Such a dynamics con-

volution effect has limited the measurable frequency rangeof existing nanomechanical mea-

surement techniques. Therefore, the goal of this chapter isto develop a systematic approach to

compensate for the dynamics convolution effect on nanomechanical property measurements,

thereby increasing the measurement frequency range and reducing the measurement errors.

Dynamics convolution effect exists and limits indentation-based nanomechanical property

measurements. Various indentation-based techniques havebeen developed to measure the fre-

quency (rate)-dependent nanomechanical properties of soft materials (2; 5; 6). For example,

the rate-dependent elastic modulus of soft materials such as Polydimethylsiloxane (PDMS)

can be measured by using force-curve measurements under different loading/unloading rates

(2; 51). The force curve measurement, however, is quasi-static, thereby time-consuming when

the frequency range to measure becomes large. Moreover, as the loading/unloading rate in-

creases, the instrument dynamics along with the probe-sample interaction effect can be con-

voluted with the material response in the measured force signal (e.g., the cantilever deflection

when SPM is used). As a result, the exerted force (from the probe to the sample) may fail to
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follow the desired force profile. The measurement time can bereduced and the measurement

frequency range can be increased by using the force modulation method (4; 5). However, the

instrument dynamics along with the interaction dynamics are still convoluted into the mea-

surement. Although in the force modulation method, the dynamics convolution effect can be

accounted for by using a linear spring-damper mechanical model(52; 23), this method is still

limited to relatively low frequency range because only a low-order spring-damper model is

feasible in practices, which becomes inadequate to capturethe dynamics convolution effect as

the measurement frequency range becomes large. The frequency range as well as the sensi-

tivity of the measurement are improved in the recently-developed multi-frequency approach

(5; 6). The applicable force spectrum, however, is severelydistorted by the dynamics convo-

lution effect when the measurement frequency range becomeslarge, resulting in poor signal-

to-noise ratio at some frequencies while input saturation at some others. Therefore, there

exists a need to compensate for the dynamics convolution effect in nanomechanical property

measurements.

Compensation for the dynamics convolution effect on nanomechanical property measure-

ments using SPM is challenging. We note that only the measurement of the probe deflection—

as the output of the entire deflection dynamics from the driven piezoactuator to the mechanical

response of the material—is available. The convoluted dynamics effect on the excitation force

can be substantially reduced by using control techniques asdemonstrated recently with the

use of novel iterative control techniques (2; 9). Thus, the control input obtained, when ap-

plied, allows the desired force profile to be accurately exerted onto the sample surface (2; 9).

Compensation for the convoluted dynamics effect on the indentation measured, however, still

remains as a challenge. This is because the indentation (of the soft material by the applied

force) usually is obtained from the difference between the probe deflection on the soft sample

and that on a hard reference sample. The difference in the material behaviors of these two

samples (soft and hard), thereby, leads to variations in theprobe-sample interaction particu-

larly when the measurement frequency range becomes large. As a result, extraneous dynamics
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effect is convoluted into the indentation measurements. Although indentation might be mea-

sured by actuating the sample and sensing the sample displacement instead of the probe (1),

the measurement frequency range can be significantly lower (than actuating and sensing the

probe), because the bandwidth of such an actuation system tends to be substantially smaller

than that of the actuation system of the probe. Therefore, techniques need to be developed to

compensate for the dynamics convolution effect on nanomechanical property measurements.

The main contribution of this chapter is the development of amodel-based approach to

eliminate the dynamics convolution effect on nanomechanical property measurements. In the

proposed approach, the cantilever deflection dynamics is analyzed and modeled as a cascaded

dynamic system consisting of the piezoactuator, the cantilever along with the mechanical fix-

ture, the probe-sample interaction dynamics, and the nanomechanical dynamics of the mater-

ial. The cantilever deflection dynamics on both the soft sample and the hard reference sample

are measured and compared to reveal that the convoluted partof the instrument dynamics is

characterized by lightly-damped poles and zeros, whose locations coincide with those of the

piezo and cantilever dynamics. On the contrary, the mechanical behavior of soft materials

is characterized by over-damped dynamic behavior that can be described by for example, a

Prony series model (8). Then, the convoluted dynamics effect, distinct from the material be-

havior in frequency domain, is removed numerically throughfitting. The proposed approach

is illustrated by implementing it to the measurement data obtained in a broadband viscoelas-

ticity measurement of a PDMS sample using SPM. Both the multi-frequency approach (5; 6)

and the iterative-control-based method (2; 9) are applied in the measurement. The results

demonstrate that the dynamics convolution effect on the measurements in both cases can be

effectively reduced by using the proposed method.
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3.2 Model-based Compensation for Instrument Dynamics Convolution

Effect

In this section, we start with describing nanomechanical property measurements on SPM.

3.2.1 Nanomechanical Property Measurement Using SPM

SPM has become an enabling tool to image sample topography and measure material prop-

erty at nanoscale (53). Specifically, the frequency-dependent mechanical properties of soft

materials can be measured by exerting forces of different frequency components to the sample

and measuring the indentation of the material—as the response of the material to the excitation

force (1). For example, the rate-dependent elastic modulusof soft polymers such as PDMS

can be measured from force-curve measurements with different loading/unloading rates (2),

where the probe-sample interaction force versus the vertical displacement of the SPM-probe

is measured during a push-retraction process when the SPM-probe follows a triangle-like tra-

jectory (see Fig. 3.1). Using force-curves to measure rate-dependent mechanical proper-

ties, however, is time consuming as the experiment needs to be repeated at different rates.

More efficiently, frequency-dependent nanomechanical properties can be measured by using

the force-modulation method (4), where a sinusoidal excitation input is augmented to a con-

stant (normal) force load and applied to drive the cantilever (1; 54). The indentation of the

probe into the soft sample is obtained from the difference ofthe cantilever deflection on the

soft sample and that on a hard reference sample for the same input voltage. Then, the mea-

sured excitation force and indentation data, i.e., the input and the output response, can be

used in an appropriate contact mechanics model to quantify the mechanical properties (such

as creep compliance, storage modulus and loss modulus) of the material (1).

The cantilever deflection signal is measured to quantify theexcitation force and the inden-

tation. The force applied is measured as (1)
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Figure 3.1 (a) the force curve measurement scheme and (b) a schematic drawing
of a force-distance curve.

P(t) = Kt ×Ct ×d(t), (3.1)

whereKt is the stiffness constant of the cantilever,Ct is the sensitivity constant of the deflection

signal vs. the vertical displacement of the probe (both can be experimentally calibrated (34)),

andd(t) denotes the cantilever deflection on the sample. Then, the indentation of the probe

into the soft sample can be obtained as (1)

h(t) = Ct × [dH(t)−dS(t)] = Ct ×∆D(t), (3.2)

where∆D(t) denotes the difference between the cantilever deflection onthe hard material,

dH(t), and that on the soft material,dS(t), respectively.

Various contact mechanics models have been developed to obtain the mechanical proper-

ties of materials (e.g., the complex compliance) (55). For example, when the probe-sample

interaction can be modeled as the contact of a frictionless,rigid, spherical indenter with a ho-

mogeneous, linear, and isotropic viscoelastic substrate,the complex compliance of the mater-

ial in uniaxial compression,J∗( jω), can be obtained from the following Hertz contact model

presented in frequency-domain:

J∗( jω) =

[
h

3
2(·)
]
( jω)

C1×P( jω)
, (3.3)

whereP(·) andh(·) are defined in Eqs. (3.1, 3.2), and the constantC1 is given by
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C1 =
3(1−ν2)

4
√

R
, (3.4)

whereν is the poisson ratio of the sample, and R is the SPM-probe radius.

Note that when measuring nanomechanical properties of softmaterials, usually the ampli-

tude of the excitation force is relatively small (i.e. the mechanical behavior of the material can

be adequately described by a linear viscoelasticity model), and a full probe-sample contact is

maintained throughout the measurement (1; 53). Therefore in the following, we assume that

the force-indentation data are measured under these two conditions.

3.2.2 Dynamics Convolution Effect on Indentation-based Nanomechanical Property

Measurement

In indentation-based measurements of nanomechanical properties, accurately must the ex-

citation forceP(t) be applied, so must the indentationh(t) be measured. It is evident from Eqs.

(3.1, 3.2, 3.3) that errors in the measured excitation forceand/or the indentation directly lead

to errors in the measured nanomechanical property. Particularly, the excitation forceP(t), i.e.,

the cantilever deflection, needs to follow the desired excitation force profile, and the difference

of the cantilever deflection on the soft material and that on the hard reference material should

accurately represent the indentation of the probe into the soft material. Maintaining accuracy

in the force applied as well as the indentation measured, however, becomes challenging when

the measurement frequency range becomes large relative to the bandwidth of the SPM instru-

ment dynamics. The challenge arises because the excitationforce is generated by applying

an input voltage to drive the piezoactuator (see Fig. 3.2). Therefore, when the measurement

frequency increases, the instrument dynamics (from the piezoactuator to the cantilever deflec-

tion) can be excited, and extraneous dynamic effect can be induced into the measurement.

Specifically, the deflection signal on a soft sample can be represented in frequency domain as

(see Fig. 3.2)
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DS( jω) = Gss( jω)Gcs( jω)Gpc( jω)V( jω)

, GS( jω)V( jω),

(3.5)

whereGss( jω) denotes the material dynamics of the soft sample,Gcs( jω) represents the in-

teraction dynamics between the cantilever-probe and the soft material,Gpc( jω) models the

dynamics from the piezoactuator to the cantilever along with the mechanical fixture between

them, andV( jω) is the Fourier transform of the input voltage applied to the piezoactuator.

Probe
∆Zp

Piezo

Substrate

 actuator

Cantilever

Gpc(jω)

Gcs(jω)

Sample

Gss(jω)

Gch(jω)

Ghs(jω)

/

/

Figure 3.2 The scheme of the dynamics involved in nanomechanical property
measurement using SPM.

Similarly, the measured deflection signal on a hard reference sample can be represented as

DH( jω) = Ghs( jω)Gch( jω)Gpc( jω)V( jω)

= KhsGch( jω)Gpc( jω)V( jω)

, GH( jω)V( jω),

(3.6)

whereGhs( jω) represents the dynamic behavior of the hard material,Gch( jω) represents the

interaction dynamics between the cantilever-probe and thehard sample, andGpc( jω) and

V( jω) are the same as defined in Eq. (3.5). Note that usually the hardreference sample,
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by choice, has an elastic modulus over several orders higherthan that of the soft sample, the

mechanical behavior of the hard reference sample can be regarded as frequency-independent

in the measured frequency range. Thus, in the following, thehard sample dynamic behavior

modelGhs( jω) is replaced by a constantKhs. Therefore, by Eq. (3.2, 3.5, 3.6), the dynamics

involved in the indentation measurement can be depicted by the block diagram in Fig. 3.3.

Gpc(jω) Gss(jω)Gcs(jω)

Gpc(jω) Ghs(jω)Gch(jω)

V(jω)

V(jω)

D
S

(jω)

D
H

(jω)

 

+ ΔD(jω)

Deflection

difference
Input

Figure 3.3 The diagram of system dynamics.

Equation (3.5) implies that the cantilever deflectionDS( jω)(i.e., the excitation force) fol-

lows the input voltageV( jω) if the total deflection dynamics involved in the measurementon

the soft sample,GS( jω), can be adequately approximated as a constant. This condition can

only be satisfied when the measurement frequency is relatively low (compared to the band-

width of the total deflection dynamicsGs( jω)). As the measurement frequency increases, the

instrument dynamics (including the piezo-cantilever dynamics Gpc( jω) and the interaction

dynamicsGcs( jω)) is convoluted (in time-domain) with the material behaviorGss( jω) and

the desired excitation force cannot be tracked by the probe if the desired force profile (after

scaling) is applied directly to drive the piezoactuator. The direct driving method is used in

the multi-frequency approach (6; 56). Thus, the measurement frequency range of the multi-

frequency method is limited by the dynamics convolution effect on the excitation force (i.e.,

cantilever deflection), which, on the contrary, can be compensated for by using control tech-

nique (9). Specifically, the desired input voltageVd( jω) can be obtained by using techniques

such as iterative learning control, so that the output cantilever deflection tracks the given de-

sired excitation force profileDdes( jω), i.e.,

Ds( jω) = GS( jω)Vd( jω) −→ Ddes( jω). (3.7)
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This approach has been demonstrated recently (2; 9).

The dynamic effect becomes more pronounced in the indentation measurement, due to

the difference of the interaction dynamics on the soft sample, Gcs( jω), and that on the hard

reference sample,Gch( jω). By Eqs. (3.5, 3.6), the difference of the cantilever deflections (see

Eq. (3.2)) is given as

∆D( jω) = [KhsGch( jω)−Gss( jω)Gcs( jω)]Gpc( jω)V( jω). (3.8)

When the measurement frequency range is relatively low (compared to the bandwidth of

the piezo-cantilever dynamicsGpc( jω)), the difference of the interaction dynamics between

the soft and the hard samples tends to be small also, i.e.,Gcs( jω) ≈ Gch( jω). This is because

in the relatively low frequency range, the piezo-cantilever dynamicsGpc( jω) also tends to be

static, and the difference of the probe-sample interactiondynamics on the cantilever deflection

also tends to be small. Thus, the measured cantilever deflection difference becomes

∆Di( jω) = [Khs−Gss( jω)]Gcs( jω)Gpc( jω)V( jω). (3.9)

The above Eq. (3.9) shows that in this case, the measured cantilever deflection difference

is generated solely by the difference of the mechanical behavior between the soft sample and

the hard reference sample,Khs−Gss( jω), thereby representing the “true” indentation of the

probe into the soft sample (after scaling, see Eq. (3.9)). When the frequency range to measure

becomes large, the deflection difference becomes

∆D( jω) = [KhsGch( jω)−Gss( jω)Gcs( jω)]Gpc( jω)V( jω)

= [Khs−Gss( jω)]Gcs( jω)Gpc( jω)V( jω)

+ [Gch( jω)−Gcs( jω)]KhsGpc( jω)V( jω)

, ∆Di( jω)+∆De( jω).

(3.10)



www.manaraa.com

46

The above Eq. (3.10) reveals that measurement error is induced into the indentation mea-

surement due to the difference of the interaction dynamics,Gch( jω)−Gcs( jω), as described

by the second term of the summation,∆De( jω). The different interaction dynamics (soft vs.

hard) is caused by issues such as different probe-sample contact area between the soft and

the hard samples and different damping effect on the cantilever deflections upon the soft and

the hard samples. Particularly, when the excitation frequency becomes high with respect to

the dynamic behavior of the soft sample, the difference of the interaction dynamics tends to

become large, resulting in large distortion in the indentation measured.

The induced interaction dynamics effect on the indentationmeasurement leads to large

distortions (errors) in the nanomechanical measurement ofsoft materials. This problem might

be alleviated through hardware modification, for example, by exciting the sample from below

instead of the probe (1). The measurement bandwidth, however, can be substantially smaller,

because the bandwidth of the actuation system for the sampleis substantially lower than that

for the probe due to the increase of the mass to be excited. Thus, there exists a need to

compensate for the convoluted dynamics effect in the indentation measurement.

3.2.3 Model-based Approach to Compensate for the Dynamics Convolution Effect on

Nanomechanical Measurement

Next, we present a model-based approach to compensate for the dynamics effect on nanome-

chanical property measurements. Since the dynamics convolution effect on the applied force

can be compensated for by using control techniques as described in Sec. 3.2.2, we focus,

in the following, on compensating for the convolution effect on the indentation measure-

ment. Note that the interaction dynamics (Gcs( jω) or Gch( jω)) and the piezo-cantilever

dynamicsGpc( jω) are convoluted together in the measurement, because only the cantilever

deflection—the response of the total deflection dynamics (GS( jω) or GH( jω) in Eqs. (3.5) or

(3.6), respectively)—can be measured. Thus, we define the total convoluted dynamics ratio,
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Gcv( jω), as the ratio of the total deflection dynamics on the hard reference sample,GH( jω),

to that on the soft sample,GS( jω):

Gcv( jω) ,
GH( jω)

GS( jω)

=
KhsGch( jω)Gpc( jω)

Gss( jω)Gcs( jω)Gpc( jω)

=
Khs

Gss( jω)

Gch( jω)

Gcs( jω)
(by Eqs. (3.5, 3.6))

, ∆Ghs( jω)∆Gc( jω).

(3.11)

The first term on the right of the above equation,∆Ghs( jω) = Khs/Gss( jω), describes the

dynamic behavior of the soft sample relative to the hard reference sample (called thehard-soft

material dynamics ratio thereinafter), and the second term,∆Gc( jω), describes the ratio of

the interaction dynamics between the soft and hard samples (called thehard-soft interaction

dynamics ratio thereinafter).

The total deflection dynamics,GS( jω) andGH( jω), can be obtained by applying an ex-

citation input to the piezoactuator and measuring the cantilever deflection as the output in the

usual “black box” identification approach (e.g. the sweep sine method). Note that full contact

of the probe with the sample is maintained by augmenting a normal load to the excitation

signal, and the measured dynamics is linear by keeping a small excitation amplitude.

Combining Eqs. (3.10, 3.11), the coupling caused deflectiondifference error,∆De( jω),

can be rewritten as

∆De( jω) = [Gch( jω)−Gcs( jω)]KhsGpc( jω)V( jω)

= [∆Gc( jω)−1]
Khs

Gss( jω)
Gss( jω)Gcs( jω)Gpc( jω)V( jω)

= [∆Ghs( jω)∆Gc( jω)−∆Ghs( jω)]DS( jω)

= [Gcv( jω)−∆Ghs( jω)]DS( jω),

(3.12)
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Thus, the above Eq.(3.12) reveals that the coupling-causeddeflection difference error,

∆De( jω), is due to the difference between the total convoluted dynamics ratio,Gcv( jω), and

the hard-soft material dynamics ratio,∆Ghs( jω). Hence, provided that these two dynamics,

Gcv( jω) and∆Ghs( jω), can be separated, the convolution caused indentation measurement

error can be eliminated. The challenge, however, exists because although the total convoluted

dynamics ratioGcv( jω) is measurable as shown in (3.11), the hard-soft material dynamics

ratio ∆Ghs( jω) is unknown in general.

We proceed to consider the fundamental difference between the hard-soft interaction dy-

namics ratio,∆Gc( jω), and the hard-soft material dynamics ratio,∆Ghs( jω). Note that the

hard-soft material dynamics ratio∆Ghs( jω) essentially represents the complex compliance

of the soft material (see Eq. (3.3)), since the hard materialbehavior is largely frequency-

independent. Moreover, as the linearity condition is satisfied during the measurement, the

complex compliance of soft materials like polymers can be well described by a linear com-

pliance model, for example, a truncated Prony series, i.e.,the complex compliance of the soft

sample is modeled as (8):

J∗( jω) =
J0

jω
−

n

∑
i=1

Ji

jω +1/τi
, (3.13)

whereτis> 0 are the retardation time constants of the soft material at different time scale,

J0 is the fully relaxed compliance, andJis are the compliance coefficients (41). Thus, in Eq.

(3.13), the material compliance is modeled as a spring andn number of spring-damper pairs

in parallel with each other. Thus, the hard-soft material dynamics ratio,∆Ghs( jω), is over-

damped in nature (8). On the contrary, the interaction dynamics difference,∆Gc( jω), tends to

be lightly-damped, i.e.,∆Gc( jω) can be represented as

∆Gc( jω) =
N

∏
i=1

ω2
n,i

s2+2ζiωn,is+ω2
n,i

, (3.14)

whereωn,i is the undamped natural frequency andζi in 0< ζi < 1 is the corresponding damp-
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ing ratio. The above Eq. (3.14) holds because the differenceof the interaction dynamics

between the soft sample and the hard one is caused by issues including the difference of the

damping effect of the soft material on the piezo-cantileverdynamics and that of the hard ma-

terial, and the different contact area of the probe with the soft sample and that with the hard

one. The damping effect of the hard material is rate-independent (in the measurement fre-

quency range), whereas the damping effect of the soft material is frequency-dependent (see

Eq. (3.5)). Moreover, the probe-sample contact area on the soft sample tends to be larger than

that on the hard sample. As a result, these effects become much more pronounced around the

lightly-damped poles and zeros of the piezo-cantilever dynamics. Thus, in frequency domain,

the material dynamic behavior and the difference of the interaction dynamics are distinct from

each other, making it possible to eliminate the convoluted interaction dynamics effect from

the indentation measurement. Particularly, numerical algorithms can be sought to decouple

them. In this chapter, the hard-soft interaction dynamics ratio ∆hs( jω) is removed from the

total convoluted dynamics ratioGcv( jω) by fitting the latter into a Prony series like model

(i.e., an over-damped linear dynamics model). Then the dynamics convolution-caused error

∆e( jω) is obtained by multiplying the fitting result with the deflection measured on the soft

sample (see Eq. (3.12)), and the compensated indentation isobtained according to Eqs. (3.2,

3.10).

3.3 Implementation Example

The proposed model-based approach to compensate for the dynamics convolution is illus-

trated by implementing it to the nanomechanical property data experimentally measured on

a Polydimethylsiloxane (PDMS) sample. We start with describing the dynamics convolution

effect observed in the experiments.
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3.3.1 Dynamics Convolution Effect on Broadband Nanomechanical Property Measure-

ment

The experimental data obtained in a broadband viscoelasticity measurement of a PDMS

sample were processed in this example. The dynamics convolution effects become pronounced

when the measurement frequency range became large (i.e., broadband). Specifically, two dif-

ferent approaches to broadband nanomechanical measurements were applied. First, the multi-

frequency method (6; 56) was implemented, where a desired excitation force profile with

power spectrum similar to band-limited white-noise was applied to drive the piezoactuator

directly, i.e., the desired force profile scaled by the DC gain of the total deflection dynamics

(from the piezoactuator to the cantilever deflection) was applied as the input voltage. Sec-

ondly, the model-less inversion-based iterative learningcontrol (MIIC)-based method was im-

plemented (9; 14), where the input obtained by using the MIICtechnique was applied to the

piezoactuator so that the cantilever deflection on the PDMS sample tracked the desired force

profile. The use of the MIIC technique was to demonstrate the use of control technique to

compensate for the dynamics convolution effect on the excitation force (see Sec. 3.2.2). In

both cases, the indentation into the PDMS sample was measured by applying the same con-

trol input to a hard reference sample—a sapphire sample whose Young’s modulus is 6 orders

higher than that of PDMS. The obtained deflection signals were used to compute the force

and the indentation (see Eqs. (3.1, 3.2)), where the sensitivity constant of the cantilever of 65

nm/V was experimentally measured by following the method outlined in (34), and the can-

tilever spring constant of 0.53 N/m was calibrated by using the thermal noise method (34).

The probe radius of 95 nm was experimentally characterized by imaging a standard probe cal-

ibration sample (porous aluminum PA01) (34; 57). The frequency components of the obtained

force and indentation results are presented for the amplitude part in Fig. 3.4 (a), (b) and Fig.

3.5 (a), (b) for the multi-frequency method and the MIIC-based method, respectively. The ob-

tained force and indentation were used to obtain the complexcompliance based on the Hertz
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model (see Eq. (3.3)), and the corresponding amplitudes of the complex compliance obtained

by using these two methods are shown in Figs. 3.4(c) and 3.5(c), respectively.

The force-indentation data measured in the experiments show that the dynamics convo-

lution effect on both the force applied and the indentation measured is pronounced. When

the multi-frequency method was used, the force applied to the PDMS sample was severely

distorted from the desired force spectrum (compare Fig. 3.4(a) with the desired force profile

shown in Fig. 3.5 (a)). Particularly, the amplitude of the force components around the resonant

peak at 2.85 KHz was 20 times and 25 times larger than the averaged amplitude of the force

components in the low frequency range (< 1.2 KHz) and that in the high frequency range

(3.5 to 4.5 KHz), respectively. Such a largely uneven distribution of the excitation force spec-

trum can result in poor signal to noise ratio in some frequency range and signal saturation in

others, both not desirable in nanomechanical property measurement. On the contrary, evenly

distributed excitation force spectrum was achieved by using the MIIC excitation method. As

shown in Fig. 3.5 (a), the spectrum of the force applied almost overlapped with that of the

desired one. Thus, the experimental results demonstrate the efficacy of the MIIC technique in

compensating for the dynamics convolution effect on excitation force.

The experimental results also demonstrated that the dynamics convolution effect on the

indention measurement was pronounced in both methods (see Fig. 3.4 (b) and Fig. 3.5 (b)).

Comparing the indentation results measured in both methods, we note that by using the MIIC

technique, the dominant peak of the indentation spectrum at2.85 KHz in the multi-frequency

method was eliminated (compare Fig. 3.4 (b) with Fig. 3.5 (b)), however, other convolution-

caused peaks became pronounced, and distorted the indentation measured. As a result, the

complex compliance results obtained were substantially distorted. As can be seen from Fig.

3.5 (c), although the value of the complex compliance in the low frequency range (around 2

Hz) at 2.6×10−7 Pa−1 was close to the static complex compliance of PDMS reported in the lit-

erature (2), the variation of the complex compliance with respect to the increase of frequency

was severely distorted from the frequency-dependent compliance of PDMS—The complex
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compliance of PDMS should monotonically decay as frequencyincreases, signaling the ma-

terial transferred from rubbery to glassy (9; 14). Therefore, it is evident from the experiment

results that the dynamics convolution effect needs to be compensated for in nanomechanical

property measurements.

3.3.2 Model-based Compensation for the Convoluted Dynamics Effect

The proposed method was applied to compensate for the dynamics convolution effect in

both methods (the multi-frequency and the MIIC-based methods). First, the total deflection

dynamics on the PDMS sampleGS( jω) (see Eq.(3.5)) was measured as described in Sec.

3.2.3, and compared with that on the sapphire sampleGH( jω) (see Eq.(3.6)). Both shown in

Fig. 3.6. Then, the total convoluted dynamics ratioGcv( jω) was obtained as the ratio of these

two deflection dynamics (see Eq.(3.11)), as shown in Fig. 3.6also. To take into account of the

possible variation due to the different contact points on sapphire (as the total deflection dy-

namics on sapphire and the reference deflection on sapphire for indentation measurement were

measured at different times thereby at different sample points), the total deflection dynamics

on the sapphire sample were measured five times at five different locations, respectively. As

shown in Fig. 3.7, the total deflection dynamics on the sapphire sample measured at differ-

ent points almost overlapped to each other (The difference is only about 1.12% of the total

deflection dynamics, both measured in average sense). In addition, we compared the total

convoluted dynamics ratio with the uncompensated indentation (obtained by using the MIIC-

based method) in Fig. 3.8.

Next, to elminate the coupling caused deflection error∆e( jω) (see Eq. (3.10)), the hard-

soft material dynamics ratio was modeled as a linear 3rd order Prony series like model, then

the hard-soft material dynamics ratio∆Ghs( jω) (see Eq. (3.11)) was decoupled from the to-

tal convoluted dynamics ratioGcv( jω) numerically using Matlab package (Mathworks, Inc.)

according to Eq. (3.12). Specifically, the hard-soft material dynamics ratio was estimated by
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Figure 3.4 (a) The magnitude of the frequency components of the excitation
force applied onto the PDMS sample by using the multi-frequency
method, (b) the amplitude of the frequency components in thecor-
responding indentation of the PDMS sample, and (c) the uncompen-
sated complex compliance calculated using the force in (a) and the
uncompensated indentation in (b) in the Hertz model.
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Figure 3.5 (a) The comparison of the magnitude of the frequency components
of the desired excitation force and the magnitude of the frequency
components of the excitation force applied onto the PDMS sample by
using the MIIC technique, (b) the amplitude of the frequencycompo-
nents in the corresponding indentation measured on the PDMSsam-
ple, and (c) the uncompensated complex compliance calculated by
using the force data in (a) and the uncompensated indentation data in
(b) in the Hertz model.
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Figure 3.6 The total deflection dynamics measured on the PDMSsample (blue
line) and on the sapphire sample (red line), and the ratio of these two
(black line), i.e., the total convoluted dynamics ratio (see Eq. (3.11)).

curve-fitting the real part and the imaginary part of the total convoluted dynamics ratio, respec-

tively. The obtained fitting parameters for the real-part and the imaginary-part are compared

in Table 3.1). Clearly the parameters obtained from the real-part fitting were very close to

those obtained from the imaginary-part fitting. Such a consistence in the fitting indicated that

the material dynamics ratio∆Ghs( jω) can be well described by a 3rd-order Prony series like

model. Then the averaged parameters were used to estimated the hard-soft material dynamics

ratio and then the coupling caused deflection error∆e( jω). The compensated indentation re-

sults are compared with the uncompensated (raw) one in Fig. 3.10 (a), and Fig. 3.11 (a) for the

multi-frequency and the MIIC-based method, respectively.Finally, the compensated indenta-

tion data were used to compute the compensated complex compliance. The uncompensated

(raw) and compensated complex compliance were compared in Fig. 3.10 (b), and Fig. 3.11

(b) for the multi-frequency and the MIIC-based method, respectively.

The experimental results showed that the dynamics convolution effect on the indentation

measurement was caused by the total convoluted dynamics ratio Gcv( jω). As shown in Fig.
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Figure 3.7 (a) The total deflection dynamics from the piezoactuator to the deflec-
tion on the sapphire sample measured by using the same control input
at 5 different points, and (b) the maximum difference between these
total deflection dynamics.
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PDMS sample using the MIIC-based method with the total convo-
luted dynamics ratio (black line).
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Figure 3.9 The curve fitting result of (a) the real part and (b)the imaginary part
of the total convoluted dynamics ratioGcv( jω) by a 3rd-order Prony
series like model.

Table 3.1 The parameters of the 3rd-order Prony series like model estimated from
the curve fitting of the real part and imaginary part of the total convo-
luted dynamics ratio,Gcv( jω), and the averaged values.

Param. Real Part Imag. Part Average
G0 1.358 NA 1.358
G1 0.096 0.078 0.0870
G2 0.085 0.086 0.0855
G3 0.135 0.134 0.1345

τ1 (sec.) 2.913×10−5 2.563×10−5 2.738×10−5

τ2 (sec.) 7.294×10−4 7.546×10−4 7.420×10−4

τ3 (sec.) 7.583×10−3 7.788×10−3 7.686×10−3
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3.8, the dynamics-convolution-caused “peaks” in the uncompensated indentation coincided

with those “peaks” of the total convoluted dynamics ratio. By using the proposed compensa-

tion method, such a dynamics convolution effect was substantially reduced. As can be seen

from Fig. 3.10 (a), the compensated indentation obtained byusing the multi-frequency method

better synchronized with the excitation force than the uncompensated one (compare Fig. 3.10

(a) with Fig. 3.4 (a) and (b), particularly around frequencies near 2 KHz to 2.5 KHz, and

around 3 KHz). As a result, after compensation, the complex compliance obtained by us-

ing the multi-frequency method monotonically decreased asthe frequency increased, which

agreed with the viscoelastic behavior of PDMS. However, when using the multi-frequency

method, such a viscoelastic behavior of PDMS cannot be seen from the compensated indenta-

tion result—due to the convoluted dynamics in the excitation force applied (compare Fig. 3.4

(b) with Fig. 3.10 (a)). On the contrary, by applying the proposed method to the indentation

data obtained by using the MIIC-based method, the compensated indentation monotonically

decreased as the frequency increased (see Fig. 3.11). As a result, the convoluted dynamics

effect was removed from the compensated complex complianceresult. As shown in Fig. 3.11,

the PDMS is above its glass temperature and displays a clear viscoelastic solid response at

room temperature. Therefore, the proposed approach can be used to effectively eliminate the

convoluted instrument dynamics effect and improve the bandwidth and/or the accuracy of the

measurement of frequency-dependent broadband nanomechanical property of soft materials.

3.4 Conclusions

In this chapter, a model-based approach to compensate for the dynamics convolution ef-

fect in the nanomechanical property measurement of soft materials is proposed. The dynamics

involved in indentation-based nanomechanical property measurements was analyzed to reveal

that the convoluted dynamics effect can be described as the difference between the lightly-

damped probe-sample interaction dynamics and the over-damped nanomechanical behavior
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Figure 3.10 (a) the compensated indentation data obtained by using the multi-
-frequency excitation, and (b) the comparison of the uncompensated
compliance of the PDMS sample (red line) with the compensated
compliance of the PDMS sample (blue line).
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compliance (red line) of the PDMS sample with the compensated
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of soft materials. Then, these two different dynamics effects were decoupled via numerical

fitting based on the Prony series model of the viscoelasticity of the soft material. The proposed

approach was illustrated by implementing it to compensate for the dynamics convolution ef-

fect in a broadband viscoelasticity measurement of a Polydimethylsiloxane (PDMS) sample

using scanning probe microscope, and the experimental results showed that the dynamics con-

volution effect can be effectively compensated for by usingthe proposed approach.
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CHAPTER 4. OPTIMAL EXCITATION FORCE DESIGN IN

INDENTATION-BASED RAPID BROADBAND NANOMECHANICAL

SPECTROSCOPY: POLY (DIMETHYLSILOXANE) EXAMPLE

Abstract

This chapter presents an optimal input design approach to achieve rapid broadband nanome-

chanical measurements of soft materials using the indentation-based method. The indentation-

based nanomechanical measurement provides unique quantification of material properties at

specified locations. The measurement, however, currently is too slow in time and too narrow in

frequency (range) to characterize time-elapsing materialproperties during dynamic evolutions

(e.g., the rapid-stage of the crystallization process of polymers). These limits exist because

the excitation input force used in current methods cannot rapidly excite broadband nanome-

chanical properties of materials. The challenges arise as the instrumental hardware dynamics

can be excited and convoluted with the material properties during the measurement when the

frequencies in the excitation force increase, resulting inlarge measurement errors. Moreover,

long measurement time is needed when the frequency range is large, which, in turn, leads to

large temporal measurement errors upon dynamic evolution of the sample. In this chapter, we

develop an optimal-input design approach to tackle these challenges. Particularly, an input

force profile with discrete spectrum is optimized to maximize the Fisher information matrix

of the linear compliance model of the soft material. Both simulation and experiments on a

Poly(dimethylsiloxane) (PDMS) sample are presented to illustrate the need for optimal input
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design, and the efficacy of the proposed approach in probe-based nanomechanical property

measurements.

4.1 Introduction

In this chapter, an optimal input design approach is proposed to achieve rapid identifi-

cation of broadband nanomechanical properties of soft materials through indentation-based

approach. Indentation-based approach using scanning probe microscope (SPM) or nanoin-

denter has become an enabling tool to quantitatively measure the nanomechanical properties

of a wide variety of materials, both locally and globally (1). The current measurement meth-

ods (4; 6), however, are limited in both the frequency range that can be measured and the

measurement time that is needed to measure the (frequency) rate-dependent viscoelasticity of

materials (19). These limits of current measurement methods (4; 6), in both measurement

frequency and time, arise as the excitation force from the probe to the sample surface em-

ployed cannot compensate for the convolution effect of the instrument dynamics (10; 51), nor

rapidly excite the rate-dependent nanomechanical behavior of the material (11; 58). Thus, the

proposed approach is developed to tackle the challenges in emerging nanomechanics studies.

Inefficiencies exist in current nanomechanical measurement methods for characterizing the

time-elapsing properties of soft materials. For example, although nanomechanical properties

such as elasticity can be measured by using the force-curve measurements (1), the excitation

input force used is quasi-static and thereby, does not contain rich frequency components to

rapidly excite viscoelastic response of materials. One attempt to address the lack of frequency

components in the excitation force has been the force modulation technique (4), where a si-

nusoidal driven signal (i.e., the input voltage) is appliedto the actuator of the cantilever —

piezoelectric actuator — with the aim to generating a sinusoidal excitation force profile. Then

the frequency-dependent material properties can be acquired by sweeping the frequency over

the measurement frequency range, and measuring the vibration of the probe (the amplitude
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and the phase) relative to the driving input. During the measurement, however, the instru-

ment hardware dynamics effect is coupled into the measured data. Although such a coupling

effect can be accounted-for by modeling the probe-sample interaction dynamics as a spring-

mass-damper system, the model is adequate only for the low frequency range (4), whereas

large measurement errors occur as the dynamics model becomes more complicated and erro-

neous when the measurement frequency becomes high (relative to the hardware bandwidth).

Moreover, the force-modulation technique is slow to sweep alarge frequency range as the

de-modulation process involved is inherently time-consuming. The measurement time can

be reduced by using the recently-developed multi-frequency method (5; 6). However, the

frequency components used are not optimized, and the measurement frequency range is still

limited by the instrument dynamics convolution effect. Evidently, there is a need to improve

the current indentation-based nanomechanical property measurement methods.

One of the main challenges to achieve rapid broadband nanomechanical measurement is

to ensure that 1) the force applied shall accurately track the desired force profile and 2) the

indentation should be accurately measured. Accurate tracking of the desired force profile

is necessary to excite the material behavior in the measuredfrequency range, as well as to

avoid issues related to low signal-to-noise ratio and inputsaturation (due to the force being

too small or too large). Accurate indentation measurement is needed to capture (and only

capture) the material behavior as the response to the force applied. When the measurement

frequency range becomes large (i.e., broadband), however,the dynamics of the system con-

sisting of the piezoactuator and the probe can be excited (65), resulting in large vibrations of

the probe relative to the sample. Furthermore, substantialdynamics uncertainties exist in the

SPM system due to the thermal drift (66) and the change of operation condition (e.g., change

of the probe). Additional force tracking errors can also be generated when the displacement

of the piezoactuator is large and as a result, the hysteresiseffect of the piezoactuator becomes

pronounced (22; 23). These adverse effects on the excitation force can be mitigated by us-

ing control techniques so that the excitation force can be accurately exerted onto the sample
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surface, as demonstrated recently by using the iterative learning control methods (2; 9; 10).

Residual instrument dynamics effect, however, still exists in the indentation measured (as

the indentation is measured indirectly from the differencebetween the probe response on the

soft sample to be measured and that on a hard reference sample). Recently, model-based

techniques (10; 12) have been developed to account for the dynamics convolution effect on

the measured indentation data. These post-processing technique, however, cannot be used to

achieve rapid broadband nanomechanical measurements, as discussed next.

The other major challenge in rapid broadband nanomechanical measurements is to achieve

rapid excitation of the material response by the force applied (from the probe). Rapid excita-

tion (of the material response) is needed to capture the time-elapsing nanomechanical prop-

erties during dynamic evolution of the material, for example, during the initial rapid stage of

the crystallization of polymers (11) or the healing processof live cell (13). Moreover, rapid

excitation of material response is also needed when mappingthe nanomechanical properties

of the material over the sample surface. Although the mapping of elasticity/stiffness of mate-

rials at nanoscale can be obtained by using the force volume mapping technique (67; 68), the

force-curve measured at each sample point is quasi-static and the mapping procedure is time

consuming, with mapping time in tens of minutes to several hours — which becomes even

much longer to map rate-dependent nanomechanical properties. Such a long mapping time

renders the adverse effects (14) due to disturbances (e.g.,thermal drift) and variations of sys-

tem dynamics pronounced. As a result, large measurement errors occur, particularly when the

sample is evolving. Recently, a frequency-rich excitationforce with power spectrum similar to

band-limited white noise has been utilized for broadband nanomechanical measurement (9).

Although the iterative learning control (ILC) technique has been applied for the tracking of

such a complicated desired trajectory, dynamics convolution effect discussed above still exists.

Thus, both the above two major challenges in rapid broadbandnanomechanical measurements

are closely related to the excitation force applied.

The main contribution of this chapter is the development of an approach based on the op-
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timal input design to achieve rapid nanomechanical spectroscopy. First, the measurement of

nanomechanical properties is transformed into a parameteridentification problem by captur-

ing the nanomechanical properties of the sample to be measured in a parameterized model

(e.g., a truncated-order exponential (Prony) series modelof the complex compliance of the

material (8; 33)). Then, the optimal excitation force — acting as the input to the material

mechanics model — is sought to minimize the covariance of theestimation error through the

maximization of the Fisher information matrix (15; 16) of the parameterized mechanics model.

Specifically, the designed optimal excitation force profilecomprises multiple sinusoidal sig-

nals whose frequency and amplitude are optimized through aniterative experimental process.

Not only can the obtained optimal force profile rapidly excite the nanomechanical properties

of materials over a broadband frequency range, but also, with a discrete frequency spectrum,

reduce the dynamics convolution effect by facilitating thetracking of such an excitation force.

Then, the designed optimal excitation force profile (e.g., the cantilever deflection when using

SPM) is tracked by using the recently-developed inversion-based iterative control technique

(2) that compensates for the hardware dynamics convolutioneffect. The proposed approach

is illustrated through both simulation and experimental implementations on the measurement

of viscoelasticity of a Polydimethylsiloxane (PDMS) sample using an SPM. The simulation

and experiment results demonstrate the need of optimal input design and the efficacy of the

proposed approach in achieving broadband viscoelasticityspectroscopy.

The proposed approach based on optimal input design is fundamentally different from

existing works. We note that recently experiment design based on the notion of system identi-

fication has been introduced to the characterization of viscoelasticity of polymers at bulk scale

(59; 60). However, the experiment design in (59; 60) was focused on the optimization of sen-

sor distribution in multi-sensor measurements, and instrument hardware dynamics convolution

effect was not addressed. The design of experiment was also explored in (61; 62; 69; 70) for

parameter estimation precision. However, only numerical simulations are conducted to verify

the proposed methods. Moreover, although recent decade haswitnessed significant develop-
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ment of control techniques for nanopositioning control centering around SPM applications

(see (71; 72; 73; 74)), the majority of the efforts are focused on the scanning operations and

SPM imaging. Therefore, the work presented in this chapter represents one of the first attempts

to the development of system identification tools for probe-based nanomechanics applications.

4.2 Optimal Input Design for Rapid Nanomechanical Spectroscopy

In this section, we present the proposed optimal input design approach for rapid broad-

band nanomechanical measurements. We start by transforming the nanomechanical property

measurement, from the system identification viewpoint, into a parameter estimation problem.

4.2.1 Parameter Estimation in Nanomechanical Property Measurement

SPM has become a powerful tool to characterize various material properties at nanoscale

(e.g., (75; 76; 77)), through the measurement of the tip-sample interaction force and the tip

indentation on the sample surface, i.e., the force curve measurement (2). More specifically,

the force-distance curve is obtained by measuring the tip-sample interaction force and the ver-

tical displacement of the SPM-tip during the process when a micro-fabricated cantilever with

a nanometer-radius tip is driven by a piezoelectric actuator to push against and then retrace

from the sample surface (see Fig. 4.1(a)). The indentation is obtained from the difference

between the cantilever deflection on the soft sample and thaton a reference hard sample when

the same control input voltage is applied to the piezoactuator during both force curve measure-

ments. Such an indentation-based approach allows the material properties to be quantitatively

measured at desired locations with desired force amplitudewith nanoscale spatial resolutions

(1; 78).

To identify material properties, the measured force and indentation results are utilized as

the input and output data in an appropriate mechanics model (1; 79). For example, when the

Hertz contact mechanics model (80) is employed, the creep compliance of the material,J(·),
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Figure 4.1 The scheme of force curve measurement by SPM

can be quantified by using the measured tip-sample interaction force,P(·), and the indentation

in the material,h(·), by

h
3
2(t) =

9

16
√

R

∫ t

0
J(t− τ)

dP(τ)

dτ
dτ, (4.1)

whereR is the tip radius. Although, the Hertz contact mechanics model captures the frequency

dependent nanomechanical property of the material (8), theresponse speed of viscoelastic

materials to the external excitation cannot be intuitivelyquantified by the Hertz model. To

further characterize the nanomechanical properties and different response speed of materials

to the excitation force, the parameterized model of the material complex complianceJ(·)

has been proposed (8). In this chapter, we use a truncated Prony series to model the creep

compliance (33; 41),

J(t) = J0−
n

∑
i=1

Ji ·e−t/τi , (4.2)

whereJ0 is the fully relaxed compliance,Jis are the compliance coefficients, andτis are the

discrete retardation times.

Combining Eq.(4.1) with Eq.(4.2) implies that the creep complianceJ(t) can be viewed as

a linear time-invariant mapping between the applied forceP(t) and the effective indentation,

h(t), both shaped by the tip-sample interaction geometry,



www.manaraa.com

68

J(t) : u(t) ,
9P(t)

16
√

R
−→ h

3
2(t) , y(t). (4.3)

Thus, the compliance model Eq.(4.2) can be converted into the following discrete autore-

gressive exogenous model (ARX) (27)

y(ℓ)+
na

∑
i=1

aiy(ℓ− i) =
nb

∑
i=1

biu(ℓ− i), (4.4)

wherena is the number of poles,nb is the number of zeros plus 1,ℓ is theℓth sampling instance,

and the unknown parametersais andbis are related to the original retardation time constants

τis and compliance coefficientsJis through

J0 = k−
n

∑
i=1

r i

pi
; Ji =

r i

pi
; τi = − 1

pi
, (4.5)

wherer is, pis, andks are the coefficients of the partial fraction expansion of the continuous

model obtained by converting the identified discrete ARX model Eq.(4.4) back to the contin-

uous time domain.

As in the standard parameter identification (27), the above discrete model Eq.(4.4) is then

rewritten as an affine function of the unknown parametersθ ,

y(ℓ) = ϕT(ℓ)θ , (4.6)

with θ ∈ ℜm×1 the vector of unknown parameters

θ = [a1, ..., ana, b1, ..., bnb]
T , na +nb = m, (4.7)

andϕ(ℓ) the sequence of measured input and output data

ϕ(ℓ) = [−y(ℓ−1), ... , −y(ℓ−na), u(ℓ−1), ... , u(ℓ−nb)]
T . (4.8)
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Thus, the least-square estimation of the linear compliancemodel parameter,̂θN, can be

obtained by minimizing the following estimation error in 2-norm,

min
θ

VN(θ ,ZN) = min
θ

1
N

N

∑
ℓ=1

[y(ℓ)− ŷ(ℓ|θ)]2

= min
θ

1
N

N

∑
ℓ=1

[y(ℓ)−ϕT(ℓ)θ ]2,

(4.9)

whereZN denotes the set of past inputs and outputs over the time interval 1≤ ℓ ≤ N, and

ŷ(ℓ|θ) denotes the output computed by using the estimated parameters θ ,

ŷ(ℓ|θ) = ϕT(ℓ)θ . (4.10)

The obtained optimal parameter estimation is given by

θ̂N =

[
N

∑
ℓ=1

ϕ(ℓ)ϕT(ℓ)

]−1 N

∑
ℓ=1

ϕ(ℓ)y(ℓ). (4.11)

After the discreteARXmodel is identified, the unknown parameters in the linear compli-

ance model Eq.(4.2) can be obtained from the mapping Eq.(4.5).

To utilize the above parameter estimation approach in nanomechanical property measure-

ments, the excitation input needs to be carefully designed.Note that the applied force is gen-

erated by the driven voltage sent to the piezoactuator (see Fig. 4.1(a)), the convolution of the

input voltage with the SPM dynamics (from the piezoactuatorto the cantilever) can thereby,

lead to distortions in the excitation force. As a result, thedistorted force may fail to excite the

nanomechanical properties of interests — even if the original input force meets the persistent

excitation condition (27; 81). Particularly, when the frequency spectrum of the input voltage

overlaps with the locations of the poles and zeros of the piezo-cantilever dynamics (10), the

dynamics convolution can result in input saturation at somefrequencies (e.g., around frequen-

cies where the poles of the piezo-cantilever dynamics locate) and/or low signal to noise ratio
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at others (e.g., around the frequencies where the zeros of the piezo-cantilever dynamics lo-

cate). As discussed in the introduction, limits exist in current approaches to account for such

a convolution effect on both the excitation force and the indentation measured. Therefore,

optimal input design is proposed to avoid the instrument dynamics effect, and achieve rapid

and accurate parameter estimations in nanomechanical property measurements.

4.2.2 Optimal Input Design for Nanomechanical Measurement

Consider the following linear representation of a contact-mechanics model of the tip-

sample interaction dynamics (e.g., the Hertz contact model),

ȳ(ℓ) = J∗(zℓ,θ)ū(ℓ)+ v̄(ℓ), (4.12)

whereū(ℓ) andȳ(ℓ) are the equivalent input and the output in nanomechanical measurements,

respectively (see Eq. (4.3)), ¯v(ℓ) is the measurement noise of a normal distribution with mean

value ofµv and variance ofσ2, i.e.,

v̄∼ N(µv,σ2)

andJ∗(zℓ,θ) is the discretized linear compliance model. For example, when the truncated

Prony series Eq. (4.2) is used, the input-output mappingJ∗(zℓ,θ) takes the form

J∗(zℓ,θ) = J0−
n

∑
i=1

Ji(zℓ−1)

(1+ T
2τi

)zℓ +( T
2τi

−1)
, (4.13)

whereθ is the vector of unknown parameters (see Eq. (4.2)), and the measurement frequency

ω is related to the z-transform variablezℓ through Tustin transformation

jω =
2
T

(zℓ−1)

(zℓ +1)
, (4.14)

In the following, the optimal input is obtained through an iterative process: In each it-

eration, the designed excitation force is applied in the nanomechanical experiment, and the
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measured force and indentation data are used to estimate theparameters of the compliance

model, which, in turn, is utilized to seek the input design for the next iteration. Thus, for any

givenkth iteration, the following linear mapping from the parameters to the estimation-caused

error in output is obtained from the first-order Taylor series expansion of the linear compliance

model,J∗(·), around the estimated parameters obtained in the previousiteration,θk−1,

∆ȳk(ℓ) , ȳ(ℓ)−J∗(zℓ,θk)ū(ℓ)

= f (ℓ)(θk−θk−1)+ v̄(ℓ)

, f (ℓ)∆θk + v̄(ℓ),

(4.15)

where f (ℓ) ∈ C1×m is given by

f (ℓ) = ū(ℓ) [ f1(ℓ), ..., fm(ℓ)] , (4.16)

with

fi(ℓ) =
∂J∗(zℓ,θk)

∂θk,i
, (4.17)

and∆θk is the difference of the estimated parameters between thekth and the(k−1)th itera-

tions,

∆θk = θk−θk−1 =




∆θk,1

...

∆θk,m




. (4.18)

Thus, the vectorf (ℓ) in Eq. (4.16) quantifies the relative importance of each parameterθk,i

in the compliance modelJ∗(zℓ,θ).

Similar to the least-square-based parameter estimation ofthe ARX model in Sec. 4.2.1,

the best linear unbiased estimate (BLUE) of∆θk can be obtained as (15)
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∆̂θk =

[
Re

N/2−1

∑
ℓ=−N/2

f ∗(ℓ)S−1
vv (ℓ) f (ℓ)

]−1

[
Re

N/2−1

∑
ℓ=−N/2

f ∗(ℓ)S−1
vv (ℓ)∆ȳk(ℓ)

]
,

(4.19)

where Re(C) denotes the real part of complex numberC, and

Svv(ℓ) = E[v∗(ℓ)v(ℓ)] (4.20)

is the autocorrelation function of the measurement noise. Thus, by combining Eqs. (4.12, 4.15)

with the above Eq. (4.19), an optimal input force can be sought to minimize the covariance of

the parameter estimation error, Cov
[
∆̂θ k

]
, which, can be shown (15; 16), is equivalent to the

inverse of the Fisher information matrixM (15), i.e.,

min
ū(·)

Cov
[
∆̂θk

]
= min

ū(·)
E[(∆̂θk−µ∆̂θ k

)2] = min
ū(·)

M−1, (4.21)

whereµ∆̂θ k
is the expectation of̂∆θ k. Note that for a nondegenerate input design (i.e., an input

with the minimum required number of different frequency components for the transfer func-

tion model with given order (63)), the Fisher information matrix is nonsingular and thereby

invertible (63). Thus, the optimal input can be obtained by maximizing the Fisher information

matrix, which is equivalent to the minimization of the Cramer-Rao Lower Bound (CRLB),

i.e., the lower bound of the variance of the estimation error∆̂θk (16).

In Eq. (4.21), the Fisher information matrix (m×m), M, is given by (15; 82)

M = N Re
N/2−1

∑
n=−N/2

E[ f ∗(n)S−1
vv (n) f (n)]. (4.22)

From Eq. (4.22), the Fisher information matrix can be derived as (see (15) for details)
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M(ω) =
π

∑
ω=−π

1
2π




∂J∗
∂θ1

...

∂J∗
∂θm




S−1
vv (ω)

[
∂J
∂θ1

, ...,
∂J

∂θm

]
. (4.23)

Next, we consider multi-sinusoidal signals for the maximization of the Fisher information

matrix,

u(ℓ) =
q

∑
i=1

Ai sin(ωiℓ). (4.24)

Such a choice of input is general because for any amplitude-normalized input with a mixed

(continuous and discrete) spectrum, an equivalent input with purely discrete spectrum can be

found. Moreover, the required number of distinct points in the input frequency spectrum is no

more than [m(m+1)/2+1] (15), wherem is the number of unknown parameters. Therefore,

one can confine the search of the optimal input to the search ofoptimal frequency components

in the sinusoidal input Eq.(4.24).

Next, we define the input design for the discrete input spectrum case:

Definition 1 For the multi-sinusoidal input u(ℓ) Eq.(4.24), an input design is to determine

a finite set F consisting of pairs of the input frequencyωi and its associated power spectral

density function p(ωi),

F(Ω, p) =
{
(ω1, p(ω1)),(ω2, p(ω2)), · · · ,(ωq, p(ωq))

}
, (4.25)

such that each power spectral density p(ωi) equals to the amplitude Ai of that frequencyωi

over the mean square powerσ2
u of the input u(ℓ), i.e.,

p(ωi) = Ai/(2πσ2
u), (4.26)

whereσ2
u is the mean square power of the input u(ℓ)
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σ2
u =

1
2π

q

∑
i=1

Ai . (4.27)

With the above definition, the optimal input designF∗ amounts to the search of the optimal

frequency componentωi through the iteration process. Specifically, after each iterationk, one

candidate optimal frequencyωk will be obtained that maximizes the following cost function,

max
ω

dk(ω,F) =
∂J(zℓ,θk)

∂θ
M−1(Ω)

∂J∗(zℓ,θk)

∂θ
−→ ωk. (4.28)

where ‘∗’ denotes the optimal solution when maximizing the cost function, andM(Ω) is the

Fisher information matrix evaluated at the input frequenciesωi selected in each iteration,

M(Ω) =
q

∑
i=1

M(ωi), (4.29)

whereωis are the input frequencies in the current input designF(Ω, p).

Comparison of the above cost function Eq.(4.28) with Eq. (4.23) implies that the max-

imization of the cost functiondk(ω,F) is equivalent to the maximization of the Fisher in-

formation matrixM(ω) (63). Various criteria have been proposed to maximize the Fisher

information matrix, including the A-optimality (minimizethe trace of the inverse of the in-

formation matrix,M−1), the G-optimality (minimize the maximum variance of the predicted

values), the E-optimality (maximize the minimum eigenvalue of the information matrix), and

the D-optimality (maximize the determinant of the information matrix) (83; 84; 85). In the

proposed optimal input design approach, D-optimal criterion is chosen for the property of

D-optimality being invariant to the parameter scale and linear transformations of the output

(64).

The D–optimality can be obtained through numerical search by using methods such as the

one dimensional search, the bi-section search, or the Newton gradient search algorithms. In

this chapter, the one dimensional search algorithm (86; 87)is used, where the new candidate
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optimal frequencyωk is obtained by computing and then comparing the cost function dk(ω,F)

at every sampling frequency within the measured frequency range.

The corresponding power spectral density function for the optimal candidate frequency

ωk, p(ωk), is selected by choosing the corresponding spectralαk (see Eq. (4.30)) from a pre-

specified sequence{α1, α2, · · ·} satisfying

0≤ αk ≤ 1,
∞

∑
k=1

αk = ∞, and lim
k→∞

αk = 0, (4.30)

and the power spectral density of other frequency components already-existing in the input

designF(ω, p) are updated by adjusting the corresponding amplitude accordingly by

p(ω j) = (1−αk)p(ω j), for j = 1,2, · · · ,k−1. (4.31)

The above iteration process to optimize the input is conducted until the variation of the

identified parameters of the compliance model is within the chosen threshold.

Remark 1 As described above, the optimal frequency components of theinput (i.e., the power

spectral of the optimal frequencies) are strengthened while the non-optimal ones are dimin-

ished through the iteration process, i.e., as the optimal frequency component will be repeti-

tively picked up, whereas the non-optimal ones won’t, the adjustment through theα-sequence

(given by Eq. (4.30)) will continuously increase the relative power spectral of those optimal

frequencies as well as decrease that of those non-optimal ones (i.e., the frequenices that occur

sparsely during the iterative search process).

The above discussion is summarized in the following algorithm to implement the proposed

optimal input design in nanomechanical property measurements.
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[Step 1] Choose a nondegenerate design F0(ω) consisting of more than

[m/2] points. For example, F0 may consist of q equally spaced

frequencies where

[m
2

]
≤ q≤ m(m+1)

2
, (4.32)

[Step 2] Compute the function S−1
vv (ω)d(ω,F0) and find its maximum by

D-optimality, say at ωo, i.e.,

S−1
vv (ωo)d(ωo,F0) = max

ω∈Ω

{
S−1

vv (ω)d(ω,F0)
}

= max
ω∈Ω

{
S−1

vv (ω)
∂J∗

∂θ
M̄−1 ∂J

∂θ

}
,

(4.33)

[Step 3] Once a new frequency is found, update the input design

by Eqs.(4.30, 4.31).

[Step 4] Repeat the above steps (2)-(4) until the change in difference

of unknown parameters between successive iterations is below

a threshhold value.

4.2.3 Implementation of the Optimal Excitation Force

To implement the above optimal input force design, control input to the vertical-axis

piezoactuator of the AFM needs to be obtained so that the applied excitation force (i.e., the

cantilever deflection) will accurately track the desired force profile (See Fig. 4.3(a)). Note

that the spectrum of the optimal excitation force contains components in the relatively high

frequency range with respect to the bandwidth of the instrument dynamics (e.g., the vertical

dynamics of the SPM from thez-axis piezoactuator to the cantilever). Therefore, the control

input must be able to account for the instrument dynamics effects. Or, due to the convolution

effect of the input with the instrument dynamics, large distortions in the excitation force occur

(10).
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Iterative learning control (ILC) is ideal to achieve precision tracking of the desired opti-

mal excitation force. As the desired trajectory is known a priori, and the measurement envi-

ronment usually is well controlled (i.e., random disturbances and/or dynamics variations are

small during each measurement), ILC approach can fully exploit the knowledge of the system

dynamics and the operation. Moreover, ILC is particularly attractive in practical implemen-

tations, as the dynamics changes of the system due to, for example, the replacement of the

probe and/or the slight but inevitable variation in the probe-sample contact condition, can be

easily compensated for through a few iterations without compromise of the tracking perfor-

mance. Whereas when feedback control is used, the robustness to account for such dynamics

uncertainties needs to be traded-off with the tracking precision. In this chapter, we utilized the

modeling-free inversion-based iterative control (MIIC) (14) to track the desired force profile.

Particularly, the MIIC algorithm is given in the frequency domain by

u0( jω) = αzd( jω), k = 0,

uk( jω) =






uk−1( jω)
zk−1( jω) zd( jω), whenzk−1( jω) 6= 0,

andk≥ 1,

0 otherwise

(4.34)

where ‘f ( jω)’ denotes the Fourier transform of the signal ‘f (t)’, ‘ zd(·)’ denotes the desired

output trajectory, ‘zk(·)’ denotes the output obtained by applying the input ‘uk(·)’ to the sys-

tem during thekth iteration, andα 6= 0 is a pre-chosen constant (e.g.,α can be chosen as the

estimated DC-Gain of the system). It has been shown (14) thatthe error between the desired

input and the iterative control input, under effects of measurement noise and/or disturbance,

is small provided that the signal to noise/disturbance ratio (SNR) is large. Furthermore, the

output tracking error can be quantified in terms of the SNR. The MIIC algorithm has been

implemented previously to nanomechanical measurements (9) where the spectrum of the ex-

citation force is similar to a band-limited white noise. As discussed in the introduction, the
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implementation of the proposed optimal input design will avoid the challenges in tracking

such a rather complicated desired force profile, thereby facilitate broadband nanomechanical

measurements.

4.3 Simulation and Experimental Example: Frequency-dependent

Viscoelasticity Measurements of PDMS

The proposed optimal input design approach is illustrated through the nanomechanical

property measurement of a PDMS sample using SPM. Both simulation and experiment were

conducted to demonstrate the need and the efficacy of the proposed method.

4.3.1 Simulation Study of Input Force Design

The goal of the simulation studies was two folds: 1) To evaluate parameter estimations in

nanomechanical measurements; and 2) to evaluate and demonstrate the need and efficacy of

optimal input design in the identification through the comparison of with and without noise

presenting in the output data. Specifically, a 3rd order Prony series model of a PDMS sample

was used as the target system to be identified. The parametersof the model, as listed in the

second column of Table 4.1, were chosen as those obtained recently in experiments using

SPM (9) (also see Eq. (4.2) for the expression of the Prony series model). Since there were 7

unknown parameters in this model, a multi-sinusoidal signal with four frequency components

was used as the effective input force (Unit: nano Newton)

u(ℓ) = A
4

∑
i=1

αi sin(2π fiℓ), (4.35)

where the amplitude of each frequency component was chosen to be the same at A.

Three different scenarios were considered in the simulation. Case 1: The input design

based on the a priori knowledge of PDMS viscoelasticity (2; 9) was used in the identifica-
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Table 4.1 The list of the true values of the seven parameters of the 3rd-order
Prony series model (“Actual”), and those identified in Case 1(“Case
1”), Case 2 (“Case 2”), and Case 3 (“Case 3”), and the corresponding
estimation errors with respect to the true values.

Param. Actual Case 1 Error Case 2 Error Case 3 Error
J0 (µPa−1) 9.11 9.11 0% 7.73 15.1% 9.13 -0.25%
J1 (µPa−1) 2.08 2.08 0% -1.03 150% 2.10 -1.14%
J2 (µPa−1) 1.53 1.53 0% 3.87 -147% 1.68 -10.1%
J3 (µPa−1) 1.51 1.50 0.66% 2.07 -37% 5.51 265%

τ1 (ms) 25.28 25.2801 0.12% -34.79 238% 26.25 -3.85%
τ2 (ms) 2.9 2.9004 0.01% 3.71 -28% 2.71 6.7%
τ3 (ms) 0.474 0.4767 -0.57% -0.05 110% 0.944 -99.1%

tion, and no noise was augmented to the effective output of the “true” compliance model

when the output was used in the identification; Case 2: the input design was the same as in

Case 1), but a band-limited white noise was added to the output (i.e., to mimic the mea-

surement noise effect); and Case 3: the optimal input designby the proposed approach

was used and the output noise as in Case 2) was added. In the first case, the input design

F0 = {(1,0.25),(10,0.25),(100,0.25),(1000,0.25)}was chosen based on the knowledge that

each retardation time constant of the complex compliance ofpolymers tends to be separated

by one decade apart from each other, and based on our previouswork (9), the retardation time

constants of the PDMS sample used later in the experiment spanned between 0.01 ms and

10 ms. For Cases 2) and 3), a band-limited white noise with signal to noise ratio of 134.3

and 146.7 (with respect to the desired force profile), respectively, was added to the output.

In Case 3), the initial choice to search the optimal input design was set as that used in Case

1) originally, and then changed toF0 = {(1,0.25),(10,0.25),(30,0.25),(60,0.25)} for faster

convergence when there existed output noise. The frequencyrange to search was thereby lim-

ited to [1, 100] Hz, and the coefficient{αk} for updating the input design was chosen to be

1/(k+3) (where k is the number of iteration). In the simulation, the sampling frequency was
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chosen as 8 KHz.

The output of the 3rd-order compliance model to be identified was used along with the in-

put to identify the parameters of the discretized linear compliance mapping by using the ARX

least-square method (Eq. (4.11), see Sec. 4.2.1). The parameters of the Prony series model

were then obtained from Eq. (4.5) after discrete-to-continuous conversion. The estimated pa-

rameters are presented in the third and fourth columns for Case 1), the fifth and sixth columns

column for Case 2), and the seventh and eighth columns for Case 3) in Table 4.1, respectively.

The obtained optimal input design is specified in Table 4.2. Notice that the amplitude at 1 and

10 Hz was kept fixed to avoid the large decreases of SNR upon theaddition of high frequency

components. The estimation error of the parameters along the iteration process in Case 3)

(i.e., the proposed optimal input design) is shown in Fig. 4.2 also.
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Figure 4.2 Simulation result: the estimation error of 3rd-order Prony series by
using the proposed optimal input design in the presence of output
noise.

The simulation results demonstrate that optimal input design is needed in nanomechanical

measurements. As shown in Table 4.1, when there was no measurement noise, the parame-

ters of the 3rd-order Prony series model can be accurately estimated by using the input design
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Table 4.2 The frequency components of the optimal input design obtained in the
simulation study

Fre. (Hz) 1 10 30 60 83 92 79 93
Amp. (%) 25 25 10.7 10.7 7.15 7.15 7.15 7.15

based on the priori-knowledge of the material — Case 1 (wherethe estimation error was less

than 1%, see the third and fourth columns of Table 4.1). Such ahighly accurate estimation,

however, was lost when noise was augmented to the output — As shown in the fifth and sixth

columns of Table 4.1 for Case 2), the estimation error becamesubstentially large (the estima-

tion error was as large as 238%). Particularly, we note that the estimation error of small time

constant was significantly larger than that of large ones. Such an increase of estimation error

— when the part of the dynamics to be identified became faster —was due to the decrease of

the SNR when frequency increased (since the Prony series model to be identified essentially

was a low-pass filter). As noise is inevitable in real experimental measurements, the simula-

tion results showed that the input force profile must be carefully designed in nanomechanical

measurements.

The simulation results also demonstrated that the proposedoptimal input design approach

was very effective for nanomechanical property measurements. By using the proposed opti-

mal input design (Case 3), the estimated parameters converged in five iterations (see Fig. 4.2).

Particularly, the estimation errors of all parameters except the two related to the fastest time

constant (J3 andτ3, see Table 4.1) were small. We note that although the estimation error of

the fast part of the compliance model was relatively large, the estimated value was still within

the same decade as the true value. We also note that the span ofthe three retardation time con-

stants over three decades (in the given 3rd-order compliance model) rendered identifying all

parameters accurately very challenging. Thus, the simulation results served well as a reference

to the following experiments.
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4.3.2 Experimental Implementation and Discussion

The simulation results were utilized to guide the implementation of the proposed approach

to the nanomechanical measurement on a PDMS sample in experiments. The initial choice

of the input design used in Case 3) of the simulation was used as the initial input design in

the experiments. The sampling frequency was further reduced to 2 kHz in the experiments

to reduce the measurement noise effect. An analog filter was also added to attenuate the

output noise. The desired cantilever deflection (specified by the input design), i.e., the desired

probe force applied to the sample, was tracked accurately byusing the MIIC technique (2).

The 2-norm and the infinity-norm of the tracking error were maintained below 2% and 5%,

respectively. As a representative tracking result, the tracking result of the desired cantilever

deflection obtained in the fifteenth iteration of the search for the optimal deflection (i.e., the

optimal desired excitation force) is shown in Fig. 4.3.
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Figure 4.3 (a) The comparison of the designed deflection (i.e., force) and the
actual deflection on PDMS sample, and (b) the tracking error between
the designed deflection and the actual one at the fifteenth iteration.

During each iteration of the search for the optimal input design, the indentation in the

PDMS (produced by the excitation force applied) was needed to identify the parameters of
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the 3rd-order Prony series model. The indentation was obtained from the difference of the

deflection measured on the PDMS sample and that on a hard reference sample (e.g., a sap-

phire sample in this experiment) when the same input voltage(to drive the piezoactuator) was

applied in both force-curve measurements. To avoid the switching back and forth between the

hard and the soft (PDMS) samples during the iterations of theoptimal input design process,

thereby reduce the measurement errors, the deflection on thehard reference sample was esti-

mated by applying the same control input to the model of the dynamics from the piezoactuator

to the cantilever deflection on the hard sample. Such a model was measured through exper-

iments by using, for example, the sweep sine method, under the condition that continuous

probe-sample contact was maintained with a given pre-load during the modeling process (No

significant dynamics variation was observed when differentpre-loads were applied (10; 2)).

The force applied from the tip to the sample during the force measurements can be obtained

from the measured cantilever deflection signal as (1),

P = Kt ×Ct ×dS, (4.36)

whereKt is the stiffness constant of the cantilever,Ct is the sensitivity constant of the deflection

signal vs. the vertical displacement of the tip (both can be experimentally calibrated (34)),

anddS denotes the cantilever deflection on the soft sample. The cantilever stiffness ofKt =

0.065 N/m was experimentally calibrated by thermal noise method (34), and the deflection-

to-displacement sensitivity ofCt = 85 nm/V was also calibrated experimentally.

Then, the indentation of the tip in the PDMS sample was obtained as (2)

h = Ct × (dH −dS), (4.37)

wheredH anddS denote the deflection on the sapphire sample and that on the PDMS sample,

respectively, when the same control input was applied in both force-curve measurements.

In this experiment, the Hertz contact mechanics model was used to obtain the complex
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compliance of the PDMS sample. By taking the Fourier transform in Eq. (4.1) (1; 79), the

complex compliance of the PDMS was obtained from the measured forceP and indentationh

as

J∗( jω) =
16
[
h

3
2(·)
]
( jω)

√
R

9P( jω)
(4.38)

The above procedure to seek the optimal excitation force wasimplemented in experiments

until the convergence of the parameters of the viscoelasticity model of the PDMS was ob-

served. The evolutions of the seven parameters of the 3rd-order Prony series model along the

iterations are plotted in Fig. 4.4 for the total of 15 iterations conducted in the experiment. In

the first iteration, the parameters were identified by using the excitation force initially chosen

based on the simulation results (see Sec. 4.3.1). The parameter estimation results are also

listed in Table 4.3 for the first three and the last three iterations, respectively.
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Table 4.3 The list of parameters identified in the first three (“Ite. 1”, “Ite. 2”, and
“Ite. 3”) and the last three (“Ite. 13”, “Ite. 14”, and “It. 15”) iterations
during the search of the optimal excitation force in the experiments.

Param. Ite.1 Ite.2 Ite.3 Ite.13 Ite.14 Ite.15
J0 (nPa−1) 261 252 250 252 262 251
J1 (nPa−1) -18 4 -33 24 20 9
J2 (nPa−1) 121 467 51 83 68 90
J3 (nPa−1) 517 185 1800 725 608 310

τ1 (ms) 212.3 171.5 63.9 54.4 81.2 71.0
τ2 (ms) 1.85 0.97 5.93 1.33 1.30 3.32
τ3 (ms) 0.12 0.093 0.16 0.069 0.11 0.11

Table 4.4 The optimal force design obtained in the experiment.

Fre. (Hz) 1 10 30 60 56 61 67 71 73 84 87 89 95 97 98 99
Amp.(%) 25 25 5.5 5.5 2.8 2.8 2.8 2.8 2.8 2.8 5.6 2.8 2.8 2.8 5.6 2.8

The experimental results demonstrated the efficacy of the proposed optimal excitation

force design in broadband nanomechanical property measurements. As shown in Fig. 4.4,

the trend of the identified parameters towards convergence was evident. Further iterations

were not pursued as after the fifteen iterations, the values of the identified parameters were

close to those obtained in our previous work (9). Particularly, the three identified retardation

time constants evenly spanned three orders (at 71 ms, 3.32 ms, and 0.11 ms, respectively).

Such an evenly distributed retardation time constants demonstrated that the nanomechanical

property of the PDMS material was well captured in the experiment by using the proposed

method (the retardation time constants within the same decade can be combined into one time

constant at that decade). Specifically, the identified valueof the static complianceJ0 at 251

nPa−1 and the instantaneous complianceJ∞ (i.e., J∞ = ∑4
i=0Ji) at 660nPa−1 were close to

those obtained in our previous work (9), respectively (where a much more complicated band-
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limited white-noise type of excitation force was used). On the contrary, when the non-optimal

excitation force was used — the excitation force used in the first iteration of the optimal force

searching process, much larger identification error occurred: As shown in Table 4.3, the three

retardation time constants were not spaced by one order fromeach other, and the identified

value ofJ1 was negative, which contradicted to the physical meaning ofthe compliance co-

efficient. Moreover, compared to the much more complicated band-limited white-noise type

of excitation force used in previous work (9), the number of frequency components in the ob-

tained optimal excitation force was much smaller (see Table4.4), and the optimal frequency

components were mainly located in the relatively lower frequency region. Such an excita-

tion force — with less number of frequency components in the lower frequency region —

substantially reduced not only the convolution effect of hardware dynamics with the nanome-

chanical response of soft sample, thereby improving the identification accuracy, but also the

measurement time needed in the experiment. The reduction ofthe measurement time is partic-

ularly crucial to quantitatively capture the time-elapsing nanomechanical property evolution

during nanoscale dynamic phenomena, for example, during the early initial stage of polymer

crystallization process (11), or the cell fusion process (13). Therefore, the experimental imple-

mentation illustrated that the proposed approach is very promising to achieve rapid broadband

nanomechanical spectroscopy.

4.4 Conclusions

In this chapter, an optimal excitation force design was proposed for indentation-based rapid

broadband nanomechanical measurement of soft materials. First, the nanomechanical property

measurement was formulated, from the system identificationviewpoint, as a parameter identi-

fication problem. Then the optimal excitation force was obtained through the maximization of

the Fisher information matrix of the linear compliance model of the viscoelasticity of the soft

material. Finally, precision tracking of the optimal excitation force was achieved by using the
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MIIC technique to compensate for the instrument hardware dynamics and hysteresis effects.

Simulation studies were conducted to evaluate the parameter identification in nanomechanical

measurements and the need for optimal excitation force design. The proposed approach was

illustrated by implementing it to identify a 3rd −order linear compliance model of a PDMS

sample.
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CHAPTER 5. CONCLUSION

This dissertation first presented a novel nanoscale broadband viscoelastic spectroscopy

(NBVS). In the proposed NBVS approach, the recently developed MIIC technique is used to:

I) the exertion of excitation force with broad frequency components onto the sample, and II)

the measurement of the material response for such excitation (i.e., the material indentation).

The frequency-dependent viscoelasticity of the material was then obtained by using the mea-

sured excitation force and the indentation in a contact mechanics model that describes the

dynamics interaction between the probe and the sample. The proposed NBVS was illustrated

by implementing it to measure the rate-dependent viscoelastic response of a PDMS sample.

The experimental results showed that the use of the MIIC technique enabled the cantilever

deflection to precisely track a band-limited (cut-off frequency: 4.5 kHz) white-noise type of

desired trajectory on the PDMS sample, thereby applying a band-limited white-noise type of

excitation force on the PDMS sample. Then the indentation ofthe PDMS sample was obtained

by applying the same control input to obtain the force measurement on a reference hard sam-

ple. The obtained excitation force and the indentation results showed that the rate-dependent

modulus of soft materials like PDMS can be measured by using the proposed NBVS approach.

In NBVS approach, large measurement error in indentation iscaused by different con-

tact between the probe and the material or the reference sample. Therefore, a model-based

approach to compensate for the dynamics convolution effectin the nanomechanical prop-

erty measurement of soft materials is proposed. The dynamics involved in indentation-based

nanomechanical property measurements was analyzed to reveal that the convoluted dynamics

effect can be described as the difference between the lightly-damped probe-sample interac-
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tion dynamics and the over-damped nanomechanical behaviorof soft materials. Then, these

two different dynamics effects were decoupled via numerical fitting based on the Prony se-

ries model of the viscoelasticity of the soft material. The proposed approach was illustrated

by implementing it to compensate for the dynamics convolution effect in a broadband vis-

coelasticity measurement of a Polydimethylsiloxane (PDMS) sample using scanning probe

microscope, and the experimental results showed that the dynamics convolution effect can be

effectively compensated for by using the proposed approach.

The offline post-processing in the above approach limits itsapplication. To accelerate the

measurement process for fast applications, such as the polymerization process of polymer and

the cell healing, an optimal excitation force design was proposed for indentation-based rapid

broadband nanomechanical measurement of soft materials. First, the nanomechanical property

measurement was formulated, from the system identificationviewpoint, as a parameter identi-

fication problem. Then the optimal excitation force was obtained through the maximization of

the Fisher information matrix of the linear compliance model of the viscoelasticity of the soft

material. Finally, precision tracking of the optimal excitation force was achieved by using the

MIIC technique to compensate for the instrument hardware dynamics and hysteresis effects.

Simulation studies were conducted to evaluate the parameter identification in nanomechanical

measurements and the need for optimal excitation force design. The proposed approach was

illustrated by implementing it to identify a 3rd −order linear compliance model of a PDMS

sample.
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APPENDIX

MODEL-LESS INVERSION-BASED ITERATIVE LEARNING

CONTROL (MIIC)

We present the convergence analysis result of the MIIC algorithm in the presence of ran-

dom noise/disturbance as follows.

Theorem 1 (14)

Let G( jω) be a stable single-input-single-output (SISO), linear time invariant (LTI) sys-

tem, and at each frequencyω, consider the system output z(t) to be affected by the disturbance

and/or the measurement noise zn(t) as (see Fig. 1 in (9))

z( jω) = zl( jω)+zn( jω), (A.0)

where zl ( jω) denotes the linear part of the system response to the input u( jω), i.e. zl ( jω) =

G( jω)u( jω), and zn( jω) denotes the output component caused by the disturbances and/or

the measurement noise. Then,

1. the ratio of the iterative input uk( jω) to the desired input ud( jω) is bounded in magni-

tude and phase, respectively, as

1− ε(ω) ≤ lim
k→∞

∣∣∣∣
uk( jω)

ud( jω)

∣∣∣∣≤
1− ε(ω)

1−2ε(ω)
, (A.0)

lim
k→∞

∣∣∣∣∠
(

uk( jω)

ud( jω)

)∣∣∣∣≤ sin−1
(

ε(ω)

1− ε(ω)

)
, (A.0)
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provided that the noise to signal ratio (NSR) as defined below, is upper-bounded by a

less-than-half constant,ε(ω),

∣∣∣∣
zk,n( jω)

zd( jω)

∣∣∣∣≤ ε(ω) < 1/2, ∀ k, (A.0)

where the desired input ud( jω) enables the linear part of the system output to exactly

track the desired output, i.e., zd( jω) = G( jω)ud( jω), and zk,n( jω) denotes the part

of the output caused by disturbances and/or measurement noise in the kth iteration.

Moreover, the relative tracking error is bounded as

lim
k→∞

∣∣∣∣
zk( jω)−zd( jω)

zd( jω)

∣∣∣∣≤
2ε(ω)(1− ε(ω))

1−2ε(ω)
; (A.0)

2. The use of the MIIC algorithm will improve the output tracking at frequencyω, i.e.,

lim
k→∞

∣∣∣∣
zk( jω)−zd( jω)

zd( jω)

∣∣∣∣< 1, (A.0)

provided that the upper bound of the NSR is less than1−
√

2
2 ≈ 0.3, i.e.,

∣∣∣∣
zk,n( jω)

zd( jω)

∣∣∣∣≤ ε(ω) < 1−
√

2
2

, ∀ k. (A.1)
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